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Let (M", g) be a Riemannian n-manifold, p € M.
Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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for some constant A € R.

Mathematicians call A the Einstein constant.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincar¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Dimension < 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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There are many known Einstein metrics on S, n >
5 which do not have constant curvature.

In fact, the moduli space of Einstein metrics on S°
has infinitely many connected components, because
J sequences unit-volume Einstein metrics with A—07.

(Bohm, Collins-Székelyhidi)

Connected sums (S? x S3)# - - - #(S5% x §3) admit

Einstein metrics for arbitrarily many summands.
Moduli spaces highly disconnected.

Similar results for most simply connected spin
5-manifolds. (Boyer-Galicki-Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, Kobayashi-Todorov)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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(M*, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

== | = wepewop -,
X =gz [l T LT

for Euler-characteristic x (M) = Z(—l)j bi(M).
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1
(M) = — [ (W4 = W) du
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for signature 7(M) = by (M) — b_(M).
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Defined in terms of intersection pairing

H*(M,R) x H*(M,R) — R
(1 1) [ e
M

Diagonalize:

+1

—1

T(M) = by (M) — b_(M)
“Signature” of M.
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Hitchin-Thorpe Inequality:

1 52 2 \ :
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, g) is locally hyper-Kahler.
The latter case happens only if M finitely cov-
ered by flat T* or Calabi-Yau K3.
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Kahler metrics:
(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

dw =0

w] € HA(M)

“Kahler class”
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M can be made into a complex manifold, in such a
manner that, locally,

T 0%f ' k 2 '
— . dz) @ dz" + dz @dﬂ}
g jglazjﬁzk [ Z z Z z

for a locally defined function f.
Modern definition:

(M?™ g) has holonomy C U(m).
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Kahler metrics:
(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

dw =0

w 1s also defines a symplectic structure on M.
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W N\ w
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an
Finstein metric g (unrelated to w)? What if we
also require A > 07
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Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéhler metrics.
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Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surtfaces.
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Wu's criterion:
det(W+) > ().
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Theorem (Wu/lL 21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

W AT = AT
satisfies
d6t<W+) > ()

at every point of M. Then M s diffeomorphic to
a del Pezzo surface, and g is one of the confor-
mally Kahler Einstein metrics weve discussed.

Corollary. Every simply-connected compact ori-
ented Einstein (M*, h) with det(W,) > 0 is dif-
feomorphic to a del Pezzo surface. Conversely,
every del Pezzo M?* carries Finstein h with
det(Wi) > 0, and these sweep out exactly one
connected component of moduli space & (M ).
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—1
1 2 2

et (1__m) d@u(l__m)dﬂ o
Y

2
Hawking: set t = 4m0 and ¢ = 2m + ¢ .
This makes ¢ into a Ricci-flat metric on R? x S2.
Makes h into extremal Kahler metric on C x CIPy.
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This improved statement of our result also depends
on a result of Mingyang Li, arXiv:2310.13197.
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Many thanks for the invitation!

It’s really a pleasure to be here!
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