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Definition. A Zoll projective connection |V| on
a smooth manifold M s tame if the associated
foliation of P(T'M) by circles is locally trivial.

Theorem. If M? is a compact surface, then any
Zoll projective connection V| on M s tame.

Theorem. If a compact surface M? admits a
Zoll projective connection |V|, then

T (M)] < oo,

and hence
M =~ S? or RP.
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Proposition. For any Zoll [V] on a compact
surface M?, we have a double fibration

P M
/ X
M N

where N &~ RIP? is the space of geodesics of [V].

If M ~ RP?, v : PTM — N can be identified
with PT'N — N via vy(ker piy).

If M~ S? v:PTM — N can be identified with
ST N — N.
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Why integrability condition?

Holomorphic functions killed by elements of 791,

iu:().

0zJ
Real analog: Frobenius theorem
Functions constant along leaves of a foliation.
Real case involves global questions, too.

Is leaf space a manifold?

Our situation: mixture of real and complex cases!
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o If M ~ S% PTM divides Z* into two compo-
nents (/4 :

]S —"1

Let Z, = U, UPTM, and let N be obtained from
Z by collapsing 02, = PT'M to N. Let

\DIZ_F%N

be the blowing down map.
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V] J Integrability Theorem
C™ % | Newlander-Nirenberg (1957)
oV ¢ Malgrange (1968)

C3 | Lipschitz Hill-Taylor (2002)
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