Zoll Manifolds,

Complex Surfaces, &

Holomorphic Disks, II

Claude LeBrun Stony Brook University

Autumn School on Holomorphic Disks Schloss Rauischholzhausen, November 15, 2018 Joint work with

Lionel Mason Oxford University

Simple closed curve: embedded circle.

Definition. Let M be a smooth compact manifold. A Zoll conection on M is a torsion-free affine connection ∇ for which the image of each maximally-extended geodesic is a simple closed curve.

Definition. Let M be a smooth compact manifold. A Zoll conection on M is a torsion-free affine connection ∇ for which the image of each maximally-extended geodesic is a simple closed curve.

Definition. A Zoll projective structure $[\nabla]$ on M is the projective equivalence class of some Zoll connection ∇ .

Theorem. If M^2 is a compact surface,

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

DBA Epstein: Any foliation of a compact 3-manifold by circles is a Seifert fibration.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

DBA Epstein: Any foliation of a compact 3-manifold by circles is a Seifert fibration.

Oriented case: any geodesic has nbhd $\approx \mathbb{R}^2 - \{0\}$.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

DBA Epstein: Any foliation of a compact 3-manifold by circles is a Seifert fibration.

Oriented case: any geodesic has nbhd $\approx \mathbb{R}^2 - \{0\}$.

Now use Jordan curve theorem.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

DBA Epstein: Any foliation of a compact 3-manifold by circles is a Seifert fibration.

Oriented case: any geodesic has nbhd $\approx \mathbb{R}^2 - \{0\}$.

Now use Jordan curve theorem.

Non-oriented case via double cover.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Proposition. If $(M, [\nabla])$ is Zoll and tame,

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Proposition. If $(M, [\nabla])$ is Zoll and tame, then M is compact.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Proposition. If $(M, [\nabla])$ is Zoll and tame, then M is compact.

Proposition. If $(M, [\nabla])$ is Zoll and tame,

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Proposition. If $(M, [\nabla])$ is Zoll and tame, then M is compact.

Proposition. If $(M, [\nabla])$ is Zoll and tame, then so is its universal cover $(\tilde{M}, [\tilde{\nabla}])$.

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If a compact surface M^2

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If a compact surface M^2 admits a Zoll projective connection $[\nabla]$,

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If a compact surface M^2 admits a Zoll projective connection $[\nabla]$, then

$$|\pi_1(M)| < \infty,$$

Theorem. If M^2 is a compact surface, then any Zoll projective connection $[\nabla]$ on M is tame.

Theorem. If a compact surface M^2 admits a Zoll projective connection $[\nabla]$, then

$$|\pi_1(M)| < \infty$$
,

and hence

$$M \approx S^2 \text{ or } \mathbb{RP}^2.$$

Proposition.

Proposition. For any Zoll $[\nabla]$ on a compact surface M^2 ,

 $\mathbb{P}TM$

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

If $M \approx \mathbb{RP}^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{P}TN \to N$ via $\nu_*(\ker \mu_*)$.

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

If $M \approx \mathbb{RP}^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{P}TN \to N$ via $\nu_*(\ker \mu_*)$.

If $M \approx S^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{S}TN \to N$.

And now for something completely different...

Proposition.

Proposition. Let M^2 be any surface,

Proposition. Let M^2 be any surface, and let $\mathcal{Z}^4 = \mathbb{P}T_{\mathbb{C}}M$

Then any affine connection ∇ on M

$$\mathbf{D} = \mathbf{L}_1 \oplus \mathbf{L}_2 \subset T_{\mathbb{C}} \mathcal{Z}$$

$$\left[\left(\frac{\partial}{\partial x^1} + \zeta \frac{\partial}{\partial x^2} \right) \Big|_{(x^1, x^2)} \right] \longleftrightarrow (x^1, x^2, \zeta).$$

$$\left[\left(\frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} \right) \Big|_{(x^{1}, x^{2})} \right] \longleftrightarrow (x^{1}, x^{2}, \zeta).$$

$$\mathbf{D} = \operatorname{span} \left\{ \Xi, \frac{\partial}{\partial \overline{\zeta}} \right\}$$

$$\begin{bmatrix} \left(\frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} \right) \Big|_{(x^{1}, x^{2})} \end{bmatrix} \longleftrightarrow (x^{1}, x^{2}, \zeta).$$

$$\mathbf{D} = \operatorname{span} \left\{ \Xi, \frac{\partial}{\partial \overline{\zeta}} \right\}$$

$$\Xi = \frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} + P(x, \zeta) \frac{\partial}{\partial \zeta},$$

$$\left[\left(\frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} \right) \Big|_{(x^{1}, x^{2})} \right] \longleftrightarrow (x^{1}, x^{2}, \zeta).$$

$$\mathbf{D} = \operatorname{span} \left\{ \Xi, \frac{\partial}{\partial \overline{\zeta}} \right\}$$

$$\Xi = \frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} + P(x, \zeta) \frac{\partial}{\partial \zeta},$$

$$P = -\Gamma_{11}^{2} + \left[\Gamma_{11}^{1} - 2\Gamma_{12}^{2} \right] \zeta + \left[2\Gamma_{12}^{1} - \Gamma_{22}^{2} \right] \zeta^{2} + \Gamma_{22}^{1} \zeta^{3}$$

$$\mathbf{D} = \mathbf{L}_1 \oplus \mathbf{L}_2 \subset T_{\mathbb{C}} \mathcal{Z}$$

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

$$\mathbf{D} = \operatorname{span} \left\{ \Xi, \frac{\partial}{\partial \overline{\zeta}} \right\}$$

$$\Xi = \frac{\partial}{\partial x^{1}} + \zeta \frac{\partial}{\partial x^{2}} + P(x, \zeta) \frac{\partial}{\partial \zeta},$$

$$P = -\Gamma_{11}^{2} + \left[\Gamma_{11}^{1} - 2\Gamma_{12}^{2} \right] \zeta + \left[2\Gamma_{12}^{1} - \Gamma_{22}^{2} \right] \zeta^{2} + \Gamma_{22}^{1} \zeta^{3}$$

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

(Nijenhuis-Wood/Malgrange version)

(Nijenhuis-Wood/Malgrange version)

Complex structure J on \mathfrak{X}^{2m}

(Nijenhuis-Wood/Malgrange version)

Complex structure J on \mathfrak{X}^{2m}

 $C^{1,\alpha}$ rank-m sub-bundle $T^{0,1}\subset T_{\mathbb{C}}\mathfrak{X}$

(Nijenhuis-Wood/Malgrange version)

Complex structure J on \mathfrak{X}^{2m}

$$\iff$$

$$C^{1,\alpha}$$
 rank- m sub-bundle $T^{0,1}\subset T_{\mathbb C}\mathfrak X$ with
$$T^{0,1}\cap \overline{T^{0,1}}=0$$

(Nijenhuis-Wood/Malgrange version)

Complex structure J on \mathfrak{X}^{2m}

 $C^{1,\alpha}$ rank-m sub-bundle $T^{0,1} \subset T_{\mathbb{C}}\mathfrak{X}$ with $T^{0,1} \cap \overline{T^{0,1}} = 0$

and

$$[C^1(T^{0,1}), C^1(T^{0,1})] \subset C^0(T^{0,1}).$$

(Hill-Taylor improvement)

Complex structure J on \mathfrak{X}^{2m}

$$C^1$$
 rank- m sub-bundle $T^{0,1} \subset T_{\mathbb{C}}\mathfrak{X}$ with $T^{0,1} \cap \overline{T^{0,1}} = 0$

and

$$[C^{1}(T^{0,1}), C^{1}(T^{0,1})] \subset C^{0}(T^{0,1}).$$

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

Then any affine connection ∇ on M determines a rank-2 sub-bundle $\mathbf{D} \subset T_{\mathbb{C}}\mathcal{Z}$ with

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

and

$$\dim \mathbf{D}_z \cap \overline{\mathbf{D}}_z = \begin{cases} 0 & \text{if } z \notin \mathbb{P}TM, \\ 1 & \text{if } z \in \mathbb{P}TM. \end{cases}$$

Then any affine connection ∇ on M determines a rank-2 sub-bundle $\mathbf{D} \subset T_{\mathbb{C}}\mathcal{Z}$ with

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

and

$$\dim \mathbf{D}_z \cap \overline{\mathbf{D}}_z = \begin{cases} 0 & \text{if } z \notin \mathbb{P}TM, \\ 1 & \text{if } z \in \mathbb{P}TM. \end{cases}$$

Moreover, two connections ∇ and $\hat{\nabla}$ give rise to the same \mathbf{D} iff they are projectively equivalent.

(Hill-Taylor improvement)

Complex structure J on \mathfrak{X}^{2m}

$$C^1$$
 rank- m sub-bundle $T^{0,1} \subset T_{\mathbb{C}}\mathfrak{X}$ with $T^{0,1} \cap \overline{T^{0,1}} = 0$

and

$$[C^{1}(T^{0,1}), C^{1}(T^{0,1})] \subset C^{0}(T^{0,1}).$$

Then any affine connection ∇ on M determines a rank-2 sub-bundle $\mathbf{D} \subset T_{\mathbb{C}}\mathcal{Z}$ with

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

and

$$\dim \mathbf{D}_z \cap \overline{\mathbf{D}}_z = \begin{cases} 0 & \text{if } z \notin \mathbb{P}TM, \\ 1 & \text{if } z \in \mathbb{P}TM. \end{cases}$$

Moreover, two connections ∇ and $\hat{\nabla}$ give rise to the same \mathbf{D} iff they are projectively equivalent.

Corollary. For any $(M^2, [\nabla])$, $\mathcal{U} = \mathbb{P}T_{\mathbb{C}}M - \mathbb{P}TM$

is a complex manifold.

Corollary. For any $(M^2, [\nabla])$, $\mathcal{U} = \mathbb{P}T_{\mathbb{C}}M - \mathbb{P}TM$

is a complex manifold.

Corollary. For any $(M^2, [\nabla])$, $\mathcal{U} = \mathbb{P}T_{\mathbb{C}}M - \mathbb{P}TM$

is a complex manifold.

(Hill-Taylor improvement)

Complex structure J on \mathfrak{X}^{2m}

$$C^1$$
 rank- m sub-bundle $T^{0,1} \subset T_{\mathbb{C}}\mathfrak{X}$ with $T^{0,1} \cap \overline{T^{0,1}} = 0$

and

$$[C^{1}(T^{0,1}), C^{1}(T^{0,1})] \subset C^{0}(T^{0,1}).$$

Why integrability condition?

Holomorphic functions killed by elements of $T^{0,1}$.

$$\xi u = 0.$$

Why integrability condition?

Holomorphic functions killed by elements of $T^{0,1}$.

$$[\xi, \eta] u = 0.$$

Why integrability condition?

Holomorphic functions killed by elements of $T^{0,1}$.

$$\xi u = 0.$$

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Holomorphic functions killed by elements of $T^{0,1}$.

$$\xi u = 0.$$

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Real analog: Frobenius theorem

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Real analog: Frobenius theorem

Functions constant along leaves of a foliation.

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Real analog: Frobenius theorem

Functions constant along leaves of a foliation.

Real case involves global questions, too.

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Real analog: Frobenius theorem

Functions constant along leaves of a foliation.

Real case involves global questions, too.

Is leaf space a manifold?

Holomorphic functions killed by elements of $T^{0,1}$.

$$\frac{\partial}{\partial \bar{z}^j}u = 0.$$

Real analog: Frobenius theorem

Functions constant along leaves of a foliation.

Real case involves global questions, too.

Is leaf space a manifold?

Our situation: mixture of real and complex cases!

Corollary. For any $(M^2, [\nabla])$, $\mathcal{U} = \mathbb{P}T_{\mathbb{C}}M - \mathbb{P}TM$

is a complex manifold.

Proposition. Let M^2 be any surface, and let $\mathcal{Z}^4 = \mathbb{P}T_{\mathbb{C}}M$ be its projectivized complexified tangent bundle.

Then any affine connection ∇ on M determines a rank-2 sub-bundle $\mathbf{D} \subset T_{\mathbb{C}}\mathcal{Z}$ with

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

and

$$\dim \mathbf{D}_z \cap \overline{\mathbf{D}}_z = \begin{cases} 0 & \text{if } z \notin \mathbb{P}TM, \\ 1 & \text{if } z \in \mathbb{P}TM. \end{cases}$$

Proposition. Let M^2 be any surface, and let $\mathcal{Z}^4 = \mathbb{P}T_{\mathbb{C}}M$ be its projectivized complexified tangent bundle.

Then any affine connection ∇ on M determines a rank-2 sub-bundle $\mathbf{D} \subset T_{\mathbb{C}}\mathcal{Z}$ with

$$[C^1(\mathbf{D}), C^1(\mathbf{D})] \subset C^0(\mathbf{D})$$

and

$$\dim \mathbf{D}_z \cap \overline{\mathbf{D}}_z = \begin{cases} 0 & \text{if } z \notin \mathbb{P}TM, \\ 1 & \text{if } z \in \mathbb{P}TM. \end{cases}$$

Functions killed by **D** across real slice?

Proposition. For any Zoll $[\nabla]$ on a compact surface M^2 , we have a double fibration

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

Proposition. For any Zoll $[\nabla]$ on a compact surface M^2 , we have a double fibration

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

If $M \approx \mathbb{RP}^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{P}TN \to N$ via $\nu_*(\ker \mu_*)$.

• If $M \approx \mathbb{RP}^2$, let \mathcal{N}^4 be obtained from \mathbb{Z}^4

• If $M \approx \mathbb{RP}^2$, let \mathcal{N}^4 be obtained from \mathcal{Z}^4 by collapsing $\mathbb{P}TM$ to \mathcal{N} along the fibers of ν .

• If $M \approx \mathbb{RP}^2$, let \mathcal{N}^4 be obtained from \mathcal{Z}^4 by collapsing $\mathbb{P}TM$ to \mathcal{N} along the fibers of ν . Let

$$\Psi: \mathcal{Z} \to \mathcal{N}$$

be the tautological blowing down map.

Proposition. For any Zoll $[\nabla]$ on a compact surface M^2 , we have a double fibration

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

If $M \approx \mathbb{RP}^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{P}TN \to N$ via $\nu_*(\ker \mu_*)$.

Proposition. For any Zoll $[\nabla]$ on a compact surface M^2 , we have a double fibration

where $N \approx \mathbb{RP}^2$ is the space of geodesics of $[\nabla]$.

If $M \approx \mathbb{RP}^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{P}TN \to N$ via $\nu_*(\ker \mu_*)$.

If $M \approx S^2$, $\nu : \mathbb{P}TM \to N$ can be identified with $\mathbb{S}TN \to N$.

• If $M \approx S^2$,

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

Let $\mathcal{Z}_+ = \mathcal{U}_+ \cup \mathbb{P}TM$,

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

Let $\mathcal{Z}_+ = \mathcal{U}_+ \cup \mathbb{P}TM$, and let \mathcal{N} be obtained from \mathcal{Z}_+

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

Let $\mathcal{Z}_{+} = \mathcal{U}_{+} \cup \mathbb{P}TM$, and let \mathcal{N} be obtained from \mathcal{Z}_{+} by collapsing $\partial \mathcal{Z}_{+} = \mathbb{P}TM$ to N.

• If $M \approx S^2$, $\mathbb{P}TM$ divides \mathbb{Z}^4 into two components \mathcal{U}_{\pm} :

Let $\mathcal{Z}_{+} = \mathcal{U}_{+} \cup \mathbb{P}TM$, and let \mathcal{N} be obtained from \mathcal{Z}_{+} by collapsing $\partial \mathcal{Z}_{+} = \mathbb{P}TM$ to N. Let

$$\Psi: \mathcal{Z}_+ \to \mathcal{N}$$

be the blowing down map.

Proposition.

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla]),$

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla])$, there is a unique almost-complex structure J

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla])$, there is a unique almost-complex structure J on \mathcal{N}^4

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla])$, there is a unique almost-complex structure J on \mathcal{N}^4 such that

$$\Psi_*(\mathbf{D}) \subset T^{0,1}(\mathcal{N},J).$$

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla])$, there is a unique almost-complex structure J on \mathcal{N}^4 such that

$$\Psi_*(\mathbf{D}) \subset T^{0,1}(\mathcal{N},J).$$

Moreover, J is integrable, and so makes N into a compact complex surface.

Proposition. For any C^3 compact Zoll surface $(M^2, [\nabla])$, there is a unique almost-complex structure J on \mathcal{N}^4 such that

$$\Psi_*(\mathbf{D}) \subset T^{0,1}(\mathcal{N},J).$$

Moreover, J is integrable, and so makes N into a compact complex surface.

[abla]	J	Integrability Theorem
C^{14}	C^4	Newlander-Nirenberg (1957)
C^{10}	C^2	Malgrange (1968)
C^3	Lipschitz	Hill-Taylor (2002)

End, Part II