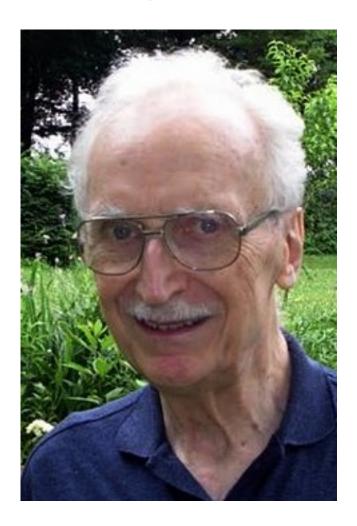
On

Hermitian, Einstein

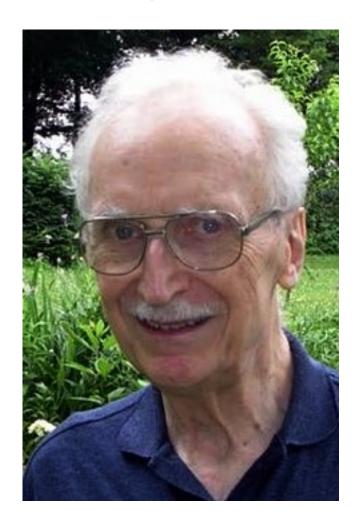
4-Manifolds

Claude LeBrun Stony Brook University

For Eugenio Calabi



For Eugenio Calabi



who discovered the magic link between Einstein manifolds and complex geometry.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda h$$

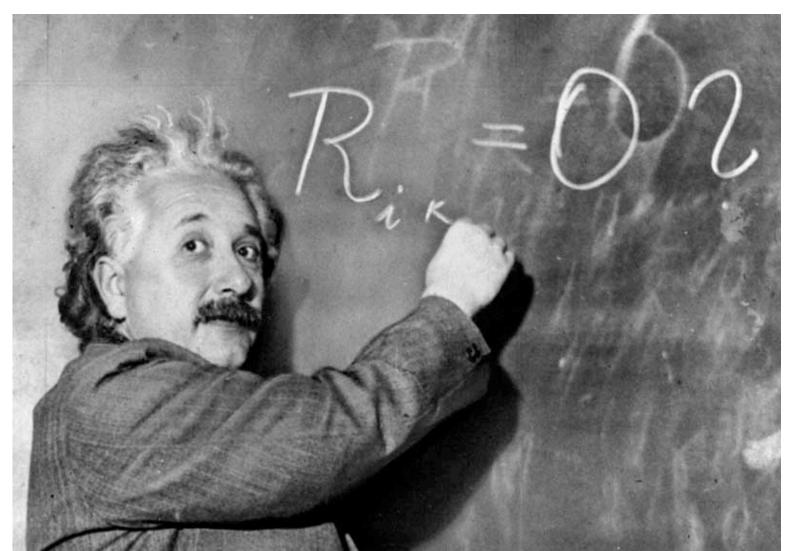
for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

 $r = \lambda h$

for some constant $\lambda \in \mathbb{R}$.



$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

Equivalently:

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z^1, \ldots, z^m) ,

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z^1, \ldots, z^m) ,

$$\mathbf{h} = \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \left[dz^{j} \otimes d\bar{z}^{k} + d\bar{z}^{k} \otimes dz^{j} \right]$$

a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z^1, \ldots, z^m) ,

$$\mathbf{h} = \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \left[dz^{j} \otimes d\bar{z}^{k} + d\bar{z}^{k} \otimes dz^{j} \right]$$

where $[h_{j\bar{k}}]$ Hermitian matrix at each point.

If (M^{2m},h,J) is Hermitian, then $\omega(\cdot,\cdot)=h(J\cdot,\cdot)$

If (M^{2m}, h, J) is Hermitian, then $\omega(\cdot, \cdot) = h(J \cdot, \cdot)$

is a non-degenerate 2-form.

If (M^{2m}, h, J) is Hermitian, then $\omega(\cdot, \cdot) = h(J \cdot, \cdot)$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

If $d\omega = 0$, (M^{2m}, h, J) is called Kähler.

$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

If $d\omega = 0$, (M^{2m}, h, J) is called Kähler.

$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

If $d\omega = 0$, (M^{2m}, h, J) is called Kähler.

$$\iff$$
 locally, $\exists f \ s.t. \ h_{j\bar{k}} = \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k}$

$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

is a non-degenerate 2-form.

In local complex coordinates,

$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

If $d\omega = 0$, (M^{2m}, h, J) is called Kähler, and ω called the Kähler form.

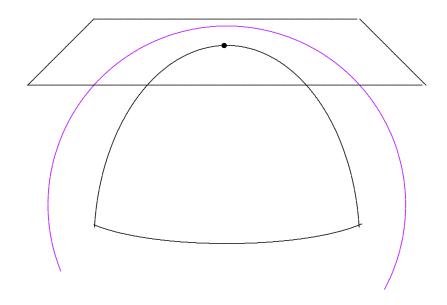
$$\omega(\cdot,\cdot) = h(J\cdot,\cdot)$$

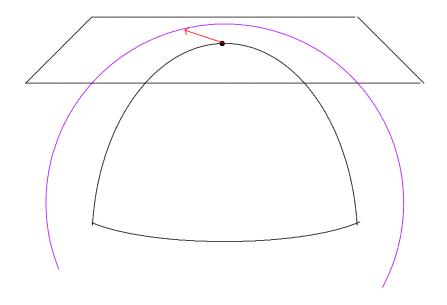
is a non-degenerate 2-form.

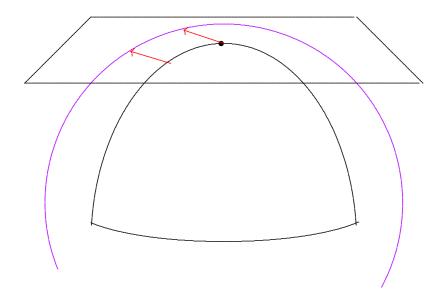
In local complex coordinates,

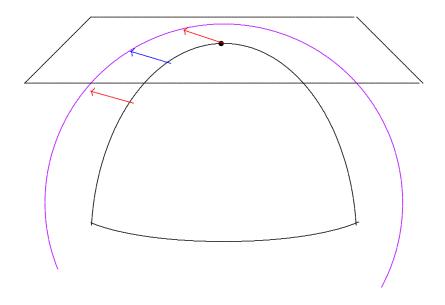
$$\omega = i \sum_{j,k=1}^{m} \mathbf{h}_{j\bar{k}} \ dz^{j} \wedge d\bar{z}^{k}$$

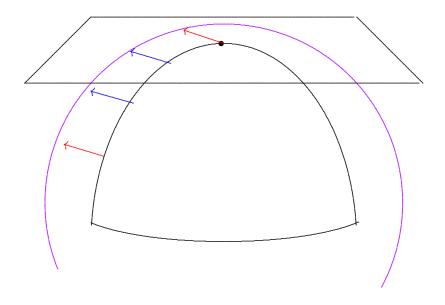
If $d\omega = 0$, (M^{2m}, h, J) is called Kähler, and ω called the Kähler form, while $[\omega] \in H^2(M, \mathbb{R})$ called the Kähler class.

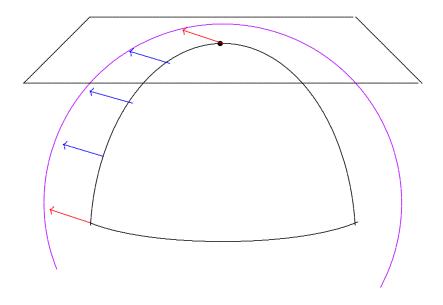


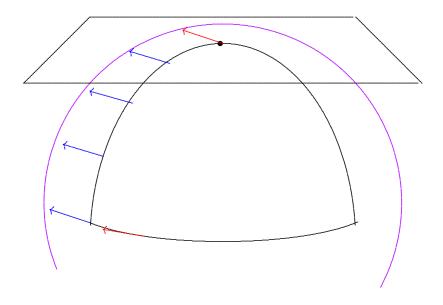


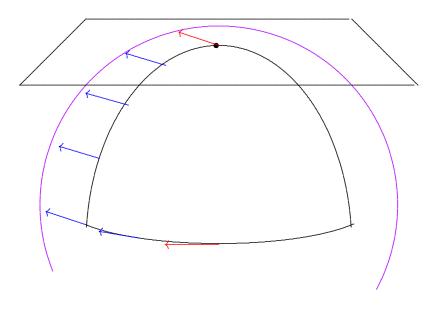


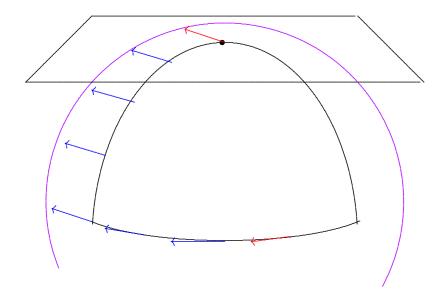


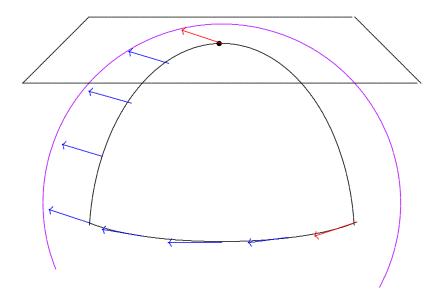


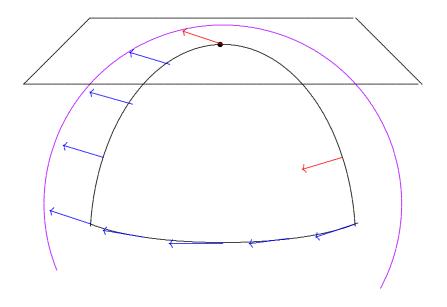


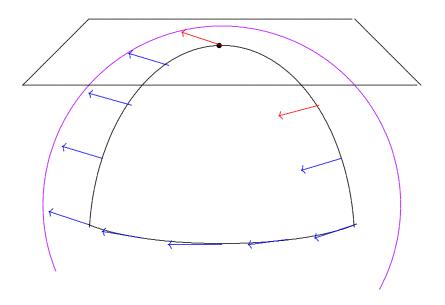


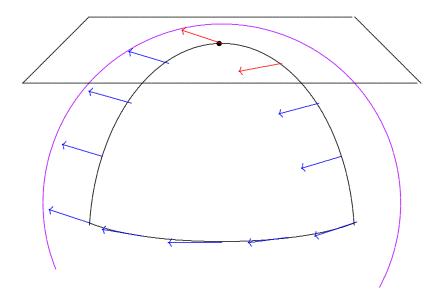


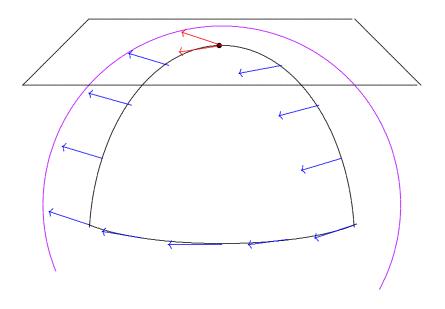


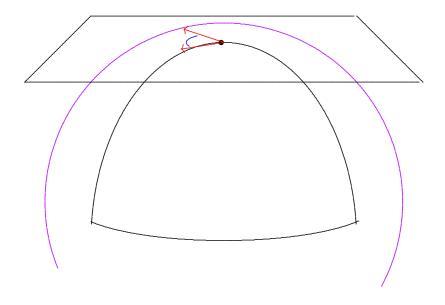




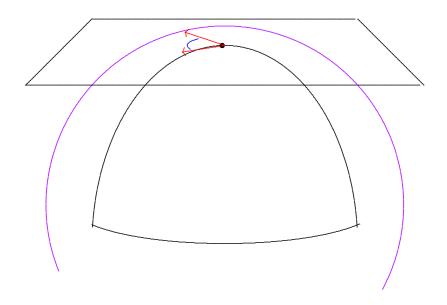




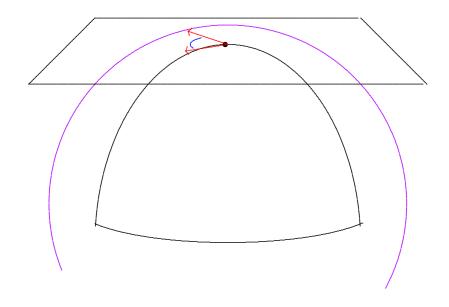




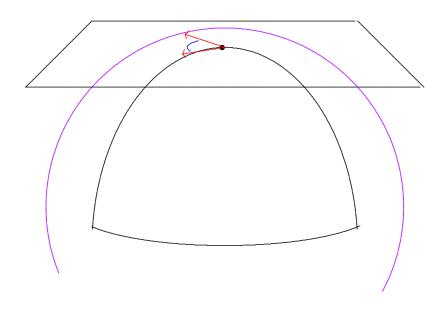
 (M^n, g) : holonomy $\subset O(n)$



 (M^{2m}, g) : holonomy



 (M^{2m}, g) Kähler \iff holonomy $\subset U(m)$



$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

 (M^{2m}, g) Kähler \iff holonomy $\subset U(m)$

Kähler magic:

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

Kähler magic:

The 2-form

$$ir(J\cdot,\cdot)$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

Kähler magic:

The 2-form

$$ir(J\cdot,\cdot)$$

is curvature of canonical line bundle $K = \Lambda^{m,0}$.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

Kähler magic:

The 2-form

$$\rho = r(J \cdot, \cdot)$$

is called the Ricci form.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

Kähler magic:

The 2-form

$$\rho = r(J \cdot, \cdot)$$

is called the Ricci form.

In local complex coordinates

$$\mathbf{r}_{j\bar{k}} = -\frac{\partial^2}{\partial z^j \partial \bar{z}^k} \log \det[\mathbf{h}_{\ell\bar{m}}]$$

If h is both an Einstein metric and Kähler,

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

• Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

• Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$. (1979)

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$. (1979)
- Chen-LeBrun-Weber metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$. (1979)
- Chen-LeBrun-Weber metric on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$. (2008)

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.
- Chen-LeBrun-Weber metric on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$.

Both are actually Hermitian.

Theorem A.

Theorem A. Let (M^4, J) be a compact complex surface,

Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M

$$h(J\cdot, J\cdot) = h.$$

$$h(J\cdot, J\cdot) = h.$$

Then either

$$h(J\cdot, J\cdot) = h.$$

Then either

 \bullet (M, J, h) is Kähler-Einstein; or

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or

Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or
- $M \approx \mathbb{CP}_2 \# 2\mathbb{CP}_2$ and h is a constant times the Chen-LeBrun-Weber metric.

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface,

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

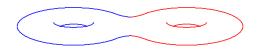
Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$

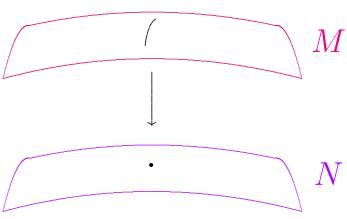
 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:



Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or
- $M \approx \mathbb{CP}_2 \# 2\mathbb{CP}_2$ and h is a constant times the Chen-LeBrun-Weber metric.

Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or
- $M \approx \mathbb{CP}_2 \# 2\mathbb{CP}_2$ and h is a constant times the Chen-LeBrun-Weber metric.

Exceptional cases: \mathbb{CP}_2 blown up at 1 or 2 points.

More precisely, there is a Hermitian, Einstein metric h with Einstein constant $\lambda \iff (M, J)$ carries a Kähler class $[\omega]$ such that

$$c_1(M) = \lambda[\omega].$$

More precisely, there is a Hermitian, Einstein metric h with Einstein constant $\lambda \iff (M, J)$ carries a Kähler class $[\omega]$ such that

$$c_1(M) = \lambda[\omega].$$

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

More precisely, there is a Hermitian, Einstein metric h with Einstein constant $\lambda \iff (M, J)$ carries a Kähler class $[\omega]$ such that

$$c_1(M) = \lambda[\omega].$$

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Kähler case: Calabi, Aubin, Yau, Siu, Tian, ...

More precisely, there is a Hermitian, Einstein metric h with Einstein constant $\lambda \iff (M, J)$ carries a Kähler class $[\omega]$ such that

$$c_1(M) = \lambda[\omega].$$

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Kähler case: Calabi, Aubin, Yau, Siu, Tian, ...

Non-Kähler case: Chen, LeBrun, Weber, ...

More precisely, there is a Hermitian, Einstein metric h with Einstein constant $\lambda \iff (M, J)$ carries a Kähler class $[\omega]$ such that

$$c_1(M) = \lambda[\omega].$$

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Warning: when h is non-Kähler, its relation to ω is surprisingly complicated!

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Fano manifolds of complex dimension 2.

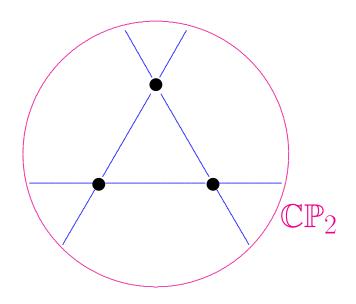
 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,



 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \text{or} \\ S^2 \times S^2 \end{cases}$$

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \text{or} \\ S^2 \times S^2 \end{cases}$$

 $k \neq 1, 2 \Longrightarrow$ admit Kähler-Einstein metrics.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \text{or} \\ S^2 \times S^2 \end{cases}$$

 $k \neq 1, 2 \Longrightarrow$ admit Kähler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \text{or} \\ S^2 \times S^2 \end{cases}$$

 $k \neq 1, 2 \Longrightarrow$ admit Kähler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang...

Exceptions: \mathbb{CP}_2 blown up at 1 or 2 points.

Theorem B. Let (M^4, J) be a compact complex surface. Then there is an Einstein metric h on M which is Hermitian with respect to $J \iff c_1(M)$ "has a sign."

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Theorem B. Let (M^4, J) be a compact complex surface. Then there is an Einstein metric h on M which is Hermitian with respect to $J \iff c_1(M)$ "has a sign."

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Non-Kähler cases: \mathbb{CP}_2 blown up at 1 or 2 points.

$$h(J\cdot, J\cdot) = h.$$

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

In other words,

$$h = fg$$

 \exists Kähler metric g, smooth function $f: M \to \mathbb{R}^+$.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

But $S^3 \times S^3$ has no Kähler metric because $H^2 = 0$.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

But $S^3 \times S^3$ has no Kähler metric because $H^2 = 0$.

Similarly for $S^{2n+1} \times S^{2m+1}$.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

$$h = fg$$

for some Kähler metric g, smooth function f.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

$$h = fg$$

for some Kähler metric g, smooth function f.

Actually, g must be an extremal Kähler metric in sense of Calabi!

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $\nabla^{1,0}s$ is a holomorphic vector field.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

$$\nabla \nabla s = (\nabla \nabla s)(J \cdot, J \cdot).$$

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $J\nabla s$ is a Killing field.

Extremal Kähler metrics = critical points of

$$g\mapsto \int_M s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $J\nabla s$ is a Killing field.

X.X. Chen: always minimizers.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $J\nabla s$ is a Killing field.

Donaldson/Mabuchi/Chen-Tian: unique in Kähler class, modulo bihomorphisms.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

$$h = fg$$

for some Kähler metric g, smooth function f.

Actually, g must be an extremal Kähler metric in sense of Calabi!

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

$$h = fg$$

for some Kähler metric g, smooth function f.

Actually, g must be an extremal Kähler metric in sense of Calabi!

What's so special about dimension four?

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
 where Λ^{\pm} are (± 1) -eigenspaces of
$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
 where Λ^{\pm} are (± 1) -eigenspaces of
$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

Notice that W_+ has a repeated eigenvalue.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_+ has a repeated eigenvalue.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

 $\nabla \cdot W_{+} = 0$, while $T^{1,0}M$ isotropic & involutive.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_{+} has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

When $W_{+} \not\equiv 0$, then use Derdziński's Theorem.

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_{+} has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

When $W_{+} \not\equiv 0$, then use Derdziński's Theorem.

When $W_{+} \equiv 0$, use global results of Boyer et al.

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^+ = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$|W_+|^2 = \frac{s^2}{24}$$

Conformally invariant Riemannian functional:

$$\mathcal{W}_{+}(g) = 2 \int_{M} |W_{+}|_{g}^{2} d\mu_{g}.$$

Conformally invariant Riemannian functional:

$$\mathcal{W}_{+}(g) = 2 \int_{M} |W_{+}|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}_{+}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

Conformally invariant Riemannian functional:

$$\mathcal{W}_{+}(g) = 2 \int_{M} |W_{+}|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}_{+}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (2\nabla^c \nabla^d + \mathring{r}^{cd})(W_+)_{acbd}.$$

is the Bach tensor of g. Symmetric, trace-free.

Conformally invariant Riemannian functional:

$$\mathcal{W}_{+}(g) = 2 \int_{M} |W_{+}|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}_{+}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (2\nabla^c \nabla^d + \mathring{r}^{cd})(W_+)_{acbd}.$$

is the Bach tensor of g. Symmetric, trace-free.

$$\nabla^a B_{ab} = 0$$

Conformally invariant Riemannian functional:

$$\mathcal{W}_{+}(g) = 2 \int_{M} |W_{+}|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}_{+}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (2\nabla^c \nabla^d + \mathring{r}^{cd})(W_+)_{acbd}.$$

is the Bach tensor of g. Symmetric, trace-free.

Conformally Einstein $\implies B = 0$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

In fact, for Kähler metrics,

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

where Hess_0 denotes trace-free part of $\nabla \nabla$.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

• g is an extremal Kähler metric;

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

- g is an extremal Kähler metric;
- $\bullet B = B(J \cdot, J \cdot);$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

- g is an extremal Kähler metric;
- $\bullet B = B(J \cdot, J \cdot);$
- $\psi = B(J \cdot, \cdot)$ is a closed 2-form;

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

- g is an extremal Kähler metric;
- $\bullet B = B(J \cdot, J \cdot);$
- $\psi = B(J \cdot, \cdot)$ is a closed 2-form;
- $g_t = g + tB$ is Kähler metric for small t.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics,

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\frac{d}{dt} \mathcal{W}_{+}(g_t) \Big|_{t=0} = \int \dot{g}^{ab} B_{ab} \, d\mu_g$$
$$= -\int |B|^2 \, d\mu_g$$

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\frac{d}{dt} \mathcal{W}_{+}(g_{t}) \Big|_{t=0} = \int \dot{g}^{ab} B_{ab} d\mu_{g}$$
$$= -\int |B|^{2} d\mu_{g}$$

So the critical metrics of restriction of W_+ to {Kähler metrics} are Bach-flat Kähler metrics.

For any extremal Kähler (M^4, g, J) ,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$

where \mathcal{F} is Futaki invariant.

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

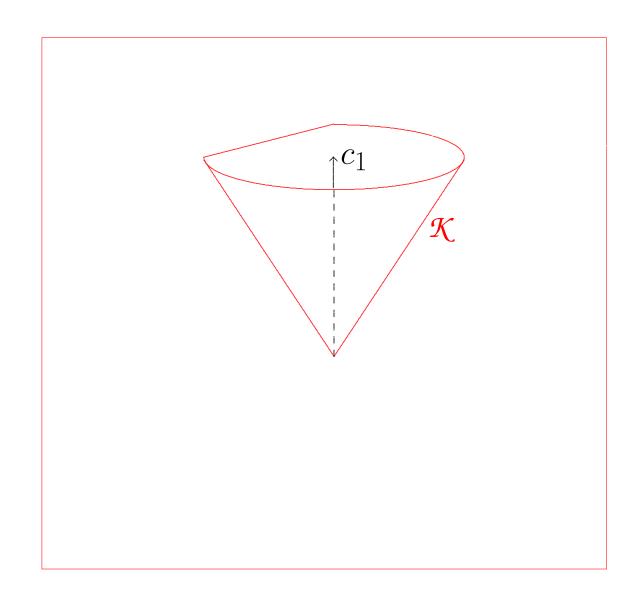
where \mathcal{F} is Futaki invariant.

For any extremal Kähler (M^4, g, J) ,

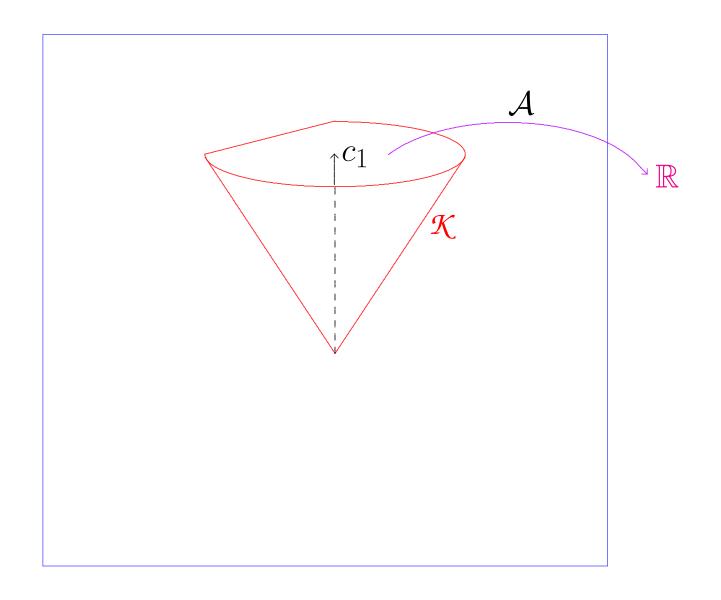
$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.



$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) = H^2(M,\mathbb{R})$$
(M Del Pezzo)



$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) = H^2(M,\mathbb{R})$$
(M Del Pezzo)

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Lemma. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Lemma. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Lemma. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

• g is an extremal Kähler metric; and

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Lemma. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

- g is an extremal Kähler metric; and
- $[\omega]$ is a critical point of $\mathcal{A}: \mathcal{K} \to \mathbb{R}$.

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature s > 0.

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature s > 0.

Lemma. Suppose that g is a Bach-flat Kähler metric on a Del Pezzo surface (M^4, J) . Then the Hermitian metric $h = s^{-2}g$ is Einstein, with positive Einstein constant.

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature s > 0.

Lemma. Suppose that g is a Bach-flat Kähler metric on a Del Pezzo surface (M^4, J) . Then the Hermitian metric $h = s^{-2}g$ is Einstein, with positive Einstein constant.

Lemma. Conversely, any Hermitian, Einstein metric on a Del Pezzo surface arises in this way.

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature s > 0.

Lemma. Suppose that g is a Bach-flat Kähler metric on a Del Pezzo surface (M^4, J) . Then the Hermitian metric $h = s^{-2}g$ is Einstein, with positive Einstein constant.

$$0 = 6s^{-1}B = \mathring{r} + 2s^{-1}\text{Hess}_0(s)$$

$$\rho + 2i\partial\bar{\partial}\log s > 0.$$

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature s > 0.

Lemma. Suppose that g is a Bach-flat Kähler metric on a Del Pezzo surface (M^4, J) . Then the Hermitian metric $h = s^{-2}g$ is Einstein, with positive Einstein constant.

Lemma. Conversely, any Hermitian, Einstein metric on a Del Pezzo surface arises in this way.

Theorem. Let (M^4, J) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric g on M. This metric is characterized by the fact that it minimizes the Calabi functional

$$\mathcal{C} = \int_{M} s^2 d\mu$$

among all Kähler metrics on (M^4, J) .

Theorem. Let (M^4, J) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric g on M. This metric is characterized by the fact that it minimizes the Calabi functional

$$\mathcal{C} = \int_{M} s^2 d\mu$$

among all Kähler metrics on (M^4, J) .

Hermitian, Einstein metric then given by

$$h = s^{-2}g$$

and uniqueness Theorem A follows.

Theorem. Let (M^4, J) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric g on M. This metric is characterized by the fact that it minimizes the Calabi functional

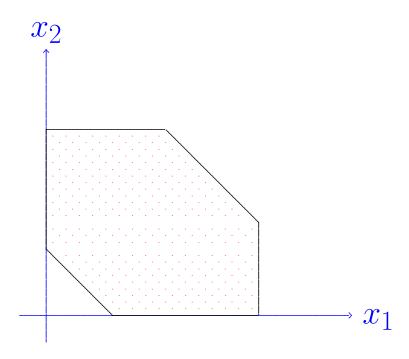
$$\mathcal{C} = \int_{M} s^2 d\mu$$

among all Kähler metrics on (M^4, J) .

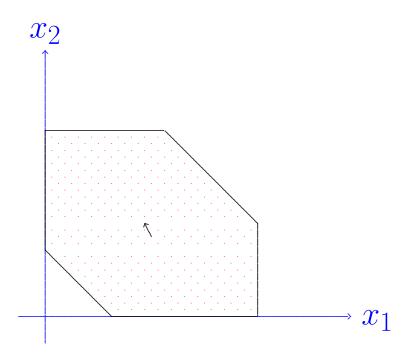
Only three cases are non-trivial:

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k = 1, 2, 3.$$

The non-trivial cases are toric, and the action \mathcal{A} can be directly computed from moment polygon.



The non-trivial cases are toric, and the action \mathcal{A} can be directly computed from moment polygon. Formula involves barycenters, moments of inertia.



$$\mathcal{A}([\boldsymbol{\omega}]) = \frac{|\partial P|^2}{2} \left(\frac{1}{|P|} + \vec{\mathfrak{D}} \cdot \Pi^{-1} \vec{\mathfrak{D}} \right)$$

$$\mathcal{A}: \check{\mathcal{K}}
ightarrow \mathbb{R}$$

has unique critical point for relevant M.

$$\mathcal{A}: \check{\mathcal{K}}
ightarrow \mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

$$\mathcal{A}: \check{\mathcal{K}}
ightarrow \mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

 ${\cal A}$ is explicit rational function —

 $3 \left[3 + 28\gamma + 96\gamma^2 + 168\gamma^3 + 164\gamma^4 + 80\gamma^5 + 16\gamma^6 + 16\beta^6 (1+\gamma)^4 + 16\alpha^6 (1+\beta+\gamma)^4 + 16\beta^5 (5 + 24\gamma + 43\gamma^2 + 37\gamma^3 + 15\gamma^4 + 2\gamma^5) + 4\beta^4 (41 + 228\gamma + 478\gamma^2 + 496\gamma^3 + 263\gamma^4 + 16\gamma^4 + 16\gamma$ $60\gamma^5 + 4\gamma^6) + 8\beta^3(21 + 135\gamma + 326\gamma^2 + 392\gamma^3 + 248\gamma^4 + 74\gamma^5 + 8\gamma^6) + 4\beta(7 + 58\gamma + 176\gamma^2 + 270\gamma^3 + 228\gamma^4 + 96\gamma^5 + 16\gamma^6) + 4\beta^2(24 + 176\gamma + 479\gamma^2 + 652\gamma^3 + 478\gamma^4 + 176\gamma^2 + 176\gamma$ $172\gamma^{5} + 24\gamma^{6}) + 16\alpha^{5}(5 + 2\beta^{5} + 24\gamma + 43\gamma^{2} + 37\gamma^{3} + 15\gamma^{4} + 2\gamma^{5} + \beta^{4}(15 + 14\gamma) + \beta^{3}(37 + 70\gamma + 30\gamma^{2}) + \beta^{2}(43 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + \beta(24 + 92\gamma + 123\gamma^{2} + 70\gamma^{3} + 123\gamma^{2} +$ $14\gamma^{4})) + 4\alpha^{4}(41 + 4\beta^{6} + 228\gamma + 478\gamma^{2} + 496\gamma^{3} + 263\gamma^{4} + 60\gamma^{5} + 4\gamma^{6} + \beta^{5}(60 + 56\gamma) + \beta^{4}(263 + 476\gamma + 196\gamma^{2}) + 8\beta^{3}(62 + 169\gamma + 139\gamma^{2} + 35\gamma^{3}) + 2\beta^{2}(239 + 876\gamma + 1089\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} + 108\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} + 108\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} +$ $556\gamma^{3} + 98\gamma^{4}) + 4\beta(57 + 263\gamma + 438\gamma^{2} + 338\gamma^{3} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 32\gamma^{2} + 338\gamma^{2} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 338\gamma^{2} + 338\gamma^{2} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 33\gamma^{2} + 338\gamma^{2} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 33\gamma^{2} + 338\gamma^{2} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 3\gamma^{2} + 338\gamma^{2} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 3\gamma^{6} + 3\gamma^{6$ $169\gamma + 139\gamma^2 + 35\gamma^3) + 4\beta^3(98 + 353\gamma + 428\gamma^2 + 210\gamma^3 + 35\gamma^4) + 2\beta^2(163 + 735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + \beta(135 + 736\gamma + 1470\gamma^2 + 1412\gamma^3 + 676\gamma^4 + 140\gamma^5 + 120\gamma^4 + 120\gamma$ $8\gamma^{6})) + 4\alpha(7 + 58\gamma + 176\gamma^{2} + 270\gamma^{3} + 228\gamma^{4} + 96\gamma^{5} + 16\gamma^{6} + 16\beta^{6}(1 + \gamma)^{3} + 4\beta^{5}(24 + 92\gamma + 123\gamma^{2} + 70\gamma^{3} + 14\gamma^{4}) + 4\beta^{4}(57 + 263\gamma + 438\gamma^{2} + 338\gamma^{3} + 119\gamma^{4} + 14\gamma^{5}) + 16\gamma^{6}(1 + \gamma)^{3} + 16\gamma^{6$ $2\beta^{3} (135 + 736\gamma + 1470\gamma^{2} + 1412\gamma^{3} + 676\gamma^{4} + 140\gamma^{5} + 8\gamma^{6}) + 4\beta^{2} (44 + 278\gamma + 645\gamma^{2} + 735\gamma^{3} + 438\gamma^{4} + 123\gamma^{5} + 12\gamma^{6}) + 2\beta (29 + 210\gamma + 556\gamma^{2} + 736\gamma^{3} + 526\gamma^{4} + 184\gamma^{5} + 123\gamma^{6}) + 3\beta^{2} (135 + 736\gamma^{2} + 1412\gamma^{3} + 676\gamma^{4} + 140\gamma^{5} + 8\gamma^{6}) + 4\beta^{2} (147 + 123\gamma^{6} + 1412\gamma^{6} + 123\gamma^{6} + 123\gamma^{6}$ $24\gamma^{6})) + 4\alpha^{2}(24 + 176\gamma + 479\gamma^{2} + 652\gamma^{3} + 478\gamma^{4} + 172\gamma^{5} + 24\gamma^{6} + 24\beta^{6}(1 + \gamma)^{2} + 4\beta^{5}(43 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 108\gamma^{2}$ $735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + 4\beta(44 + 278\gamma + 645\gamma^2 + 735\gamma^3 + 438\gamma^4 + 123\gamma^5 + 12\gamma^6) + \beta^2(479 + 2580\gamma + 5058\gamma^2 + 4716\gamma^3 + 2178\gamma^4 + 432\gamma^5 + 24\gamma^6)) \Big] / \\$ $\left[1+10\gamma+36\gamma^{2}+64\gamma^{3}+60\gamma^{4}+24\gamma^{5}+24\beta^{5}(1+\gamma)^{5}+24\alpha^{5}(1+\beta+\gamma)^{5}+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(5+20\gamma+23\gamma^{2}+10\gamma^{3})+16\beta^{3}(4+28\gamma+72\gamma^{2}+90\gamma^{3}+57\gamma^{4}+15\gamma^{5})+12\beta^{4}(1+\gamma)^{2}(1+2\gamma+10\gamma^{3}+10$ $12\beta^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5}) + 2\beta(5 + 45\gamma + 144\gamma^{2} + 224\gamma^{3} + 180\gamma^{4} + 60\gamma^{5}) + 12\alpha^{4}(1 + \beta + \gamma)^{2}(5 + 20\gamma + 23\gamma^{2} + 10\gamma^{3} + 10\beta^{3}(1 + \gamma) + \beta^{2}(23 + 46\gamma + 10\gamma^{2} + 1$ $16\gamma^{2}) + 2\beta(10 + 30\gamma + 23\gamma^{2} + 5\gamma^{3})) + 16\alpha^{3}(4 + 28\gamma + 72\gamma^{2} + 90\gamma^{3} + 57\gamma^{4} + 15\gamma^{5} + 15\beta^{5}(1 + \gamma)^{2} + 3\beta^{4}(19 + 57\gamma + 50\gamma^{2} + 13\gamma^{3}) + 3\beta^{3}(30 + 120\gamma + 155\gamma^{2} + 78\gamma^{3} + 15\gamma^{2} +$ $13\gamma^{4}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3} + 20\gamma^{5}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3} + 20\gamma^{5}(1 + \gamma)^{3}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{2} + 360\gamma^{2} + 360\gamma^{2} + 36\gamma^{4} + 360\gamma^{2} + 36\gamma^{4} + 36$ $\beta^{4} (68 + 272\gamma + 366\gamma^{2} + 200\gamma^{3} + 36\gamma^{4}) + 4\beta^{3} (24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + 2\beta (12 + 84\gamma + 207\gamma^{2} + 240\gamma^{3} + 136\gamma^{4} + 30\gamma^{5}) + \beta^{2} (69 + 414\gamma + 864\gamma^{2} + 120\gamma^{2} + 120\gamma$ $824\gamma^{3} + 366\gamma^{4} + 60\gamma^{5})) + 2\alpha(5 + 45\gamma + 144\gamma^{2} + 224\gamma^{3} + 180\gamma^{4} + 60\gamma^{5} + 60\beta^{5}(1 + \gamma)^{4} + 12\beta^{4}(15 + 75\gamma + 136\gamma^{2} + 114\gamma^{3} + 43\gamma^{4} + 5\gamma^{5}) + 12\beta^{2}(12 + 84\gamma + 207\gamma^{2} + 12\beta^{2}) + 12\beta^{2}(12 + 84\gamma^{2} + 12\beta^{2}) + 12\beta^{2}(12$ $240\gamma^{3} + 136\gamma^{4} + 30\gamma^{5}) + 8\beta^{3}(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5}) + 3\beta(15 + 120\gamma + 336\gamma^{2} + 448\gamma^{3} + 300\gamma^{4} + 80\gamma^{5})) \Big]$

$$\mathcal{A}: \check{\mathcal{K}}
ightarrow \mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

A is explicit rational function — but quite complicated!

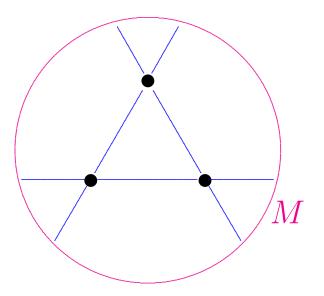
$$\mathcal{A}: \check{\mathcal{K}}
ightarrow \mathbb{R}$$

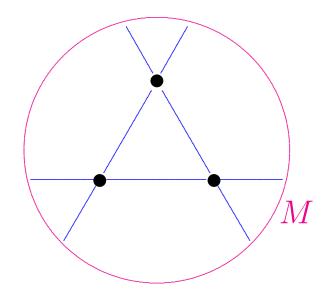
has unique critical point for relevant M.

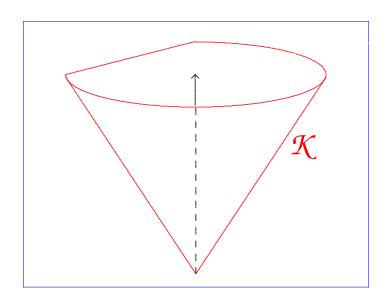
Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

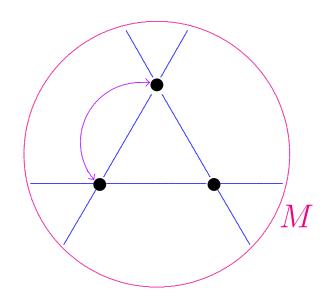
A is explicit rational function — but quite complicated!

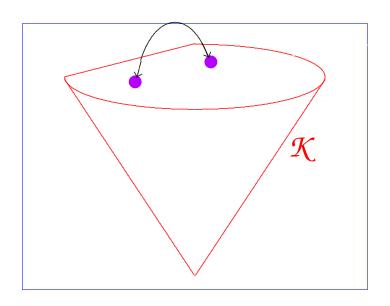
Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.

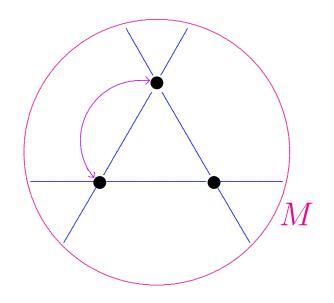


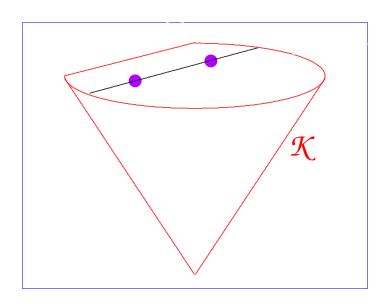


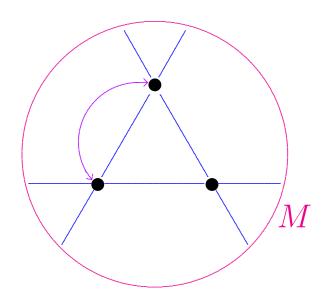


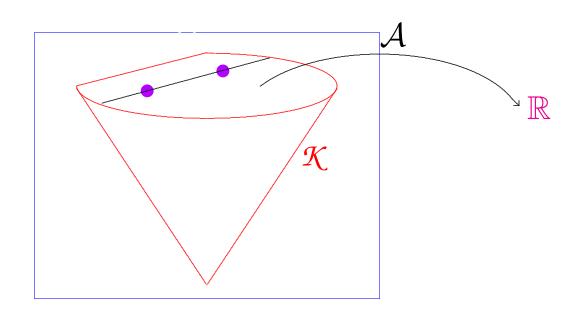












$$\mathcal{A}:\check{\mathcal{K}}
ightarrow\mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

A is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.

Done by showing \mathcal{A} convex on appropriate lines.

$$\mathcal{A}:\check{\mathcal{K}}
ightarrow\mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

A is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.

Done by showing \mathcal{A} convex on appropriate lines.

Final step then just calculus in one variable...

$$\mathcal{A}:\check{\mathcal{K}} o\mathbb{R}$$

has unique critical point for relevant M.

Here
$$\check{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+$$
.

A is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.

Done by showing \mathcal{A} convex on appropriate lines.

Similar calculations also led to new existence proof. . .

Theorem C. There is a Kähler metric g on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric.

Theorem C. There is a Kähler metric g on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

Theorem C. There is a Kähler metric g on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

$$[0,1)\ni t\longmapsto g_t$$

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}}_2$ s.t.

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\mathbb{CP}_2$ s.t.

• g_0 is Kähler-Einstein, and such that

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\mathbb{CP}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

This reconstructs Chen-LeBrun-Weber metric.

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

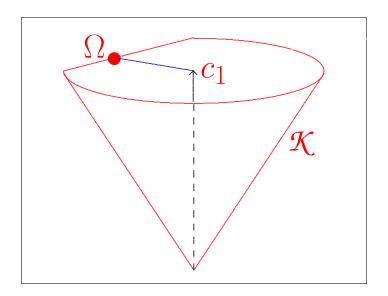
- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

This reconstructs Chen-LeBrun-Weber metric.

Could also reconstruct Page metric this way...

$$\Omega_t = (1 - t)c_1 + t\Omega$$

$$\Omega_t = (1 - t)c_1 + t\Omega$$



• Continuity method

$$\Omega_t = (1 - t)c_1 + t\Omega$$

• LeBrun-Simanca

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.

$$\Omega_t = (1 - t)c_1 + t\Omega$$

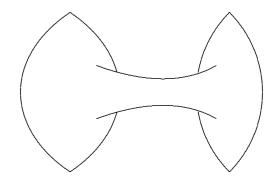
- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .

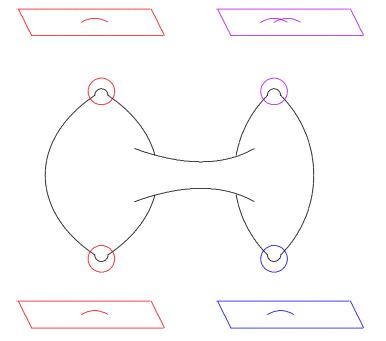
$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .



$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .



$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .
- Sobolev Control

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...

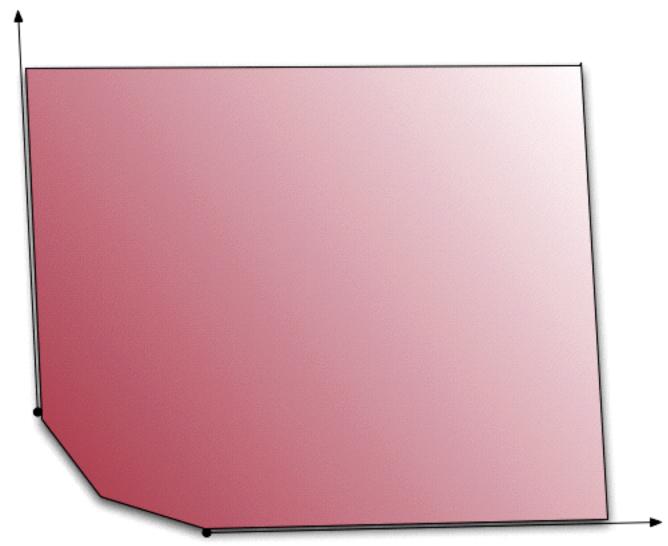
$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling

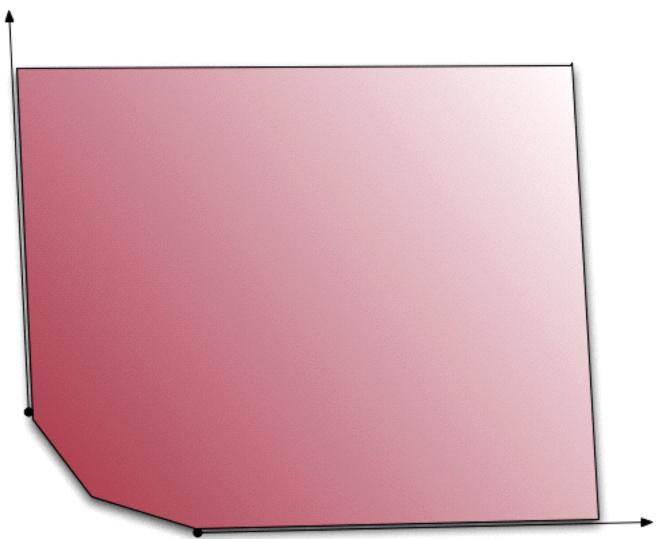
$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling
 - Toric geometry

Any bubble must be toric, scalar-flat Kähler, ALE:



Any bubble must be toric, scalar-flat Kähler, ALE:



Must contain a holomorphic 2-sphere S with $[S] \cdot [S] < 0.$

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling
 - Toric geometry
 - Symplectic 2-spheres → Lagrangian 2-spheres

If bubbling occurs as $t_j \nearrow t_{\infty}$,

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$

But every such class in M represented by a holomorphic curve!

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$

But every such class in M represented by a holomorphic curve! So $\Omega_{t_{\infty}} = \Omega_{1}$, and we have just bubbled off a (-1)-curve, as desired!

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.