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for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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If M2™ endowed with complex structure ./,
a Riemannian metric h called Hermitian if

Here ./ = integrable almost-complex structure.

Equivalently:

In local complex coordinates (21, ..., 2™

)

m
_ Z [dz] 2 d7F + d5F @ dz]}

where |[h ]—6] Hermitian matrix at each point.
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If (M?™ h,.J) is Hermitian, then
CU(-, ) — h(‘]a )

is a non-degenerate 2-form.

In local complex coordinates,

m
o . _k
W =1 E hjkdz N dz
7,k=1

If dw =0, (M?™, h,.J) is called Kihler,
and w called the Kahler form, while

w] € H?(M,R) called the Kahler class.
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Kahler metrics:
(M?™, g) Kéhler <= holonomy C U(m)

Kahler magic:

The 2-form

p:7“<J°,°>

1s called the Ricci form.

In local complex coordinates

5)2
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If 1 is both an Einstein metric and Kahler,
1t 1s called a Kahler-Einstein metric.

Gene Calabi laid groundwork for the entire
modern theory of Kahler-Einstein metrics.

A profusion of compact complex manifolds
now known to admit Kahler-Einstein metrics.

Very few compact Einstein 4-manifolds
known which are not Kahler-Einstein!

Two such non-Kahler examples:

e Page metric on CPo#CP-.
e Chen-LeBrun-Weber metric on CPo#2CP-.

Both are actually Hermitian.
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Recall:

CP5y = reverse oriented CPs.

Connected sum #:

Blowing up:

If NV is a complex surface, may replace p € NV
with CPPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.
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Theorem A. Let (M*,.]) be a compact complex
surface, and suppose that h is an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then either

o (M, .J,h) is Kahler-Finstein; or

o V[ ~ CP>#CPy, and h is a constant times the
Page metric; or

o\ ~ CP>#2CP> and h is a constant times
the Chen-LeBrun-Weber metric.

Exceptional cases: CIPo blown up at 1 or 2 points.
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Theorem B. Let (M*,.]) be a compact complex
surface. Then there is an Einstein metric h on
M whach s Hermitian with respect to J <—
c1(M) “has a sign.”

More precisely, there is a Hermitian, Einstein
metric h with Finstein constant A <= (M, .J)
carries a Kahler class \w| such that

c1(M) = Alu].

For fixed A\ # 0, this h 1s moreover unique mod-
ulo biholomorphisms of (M, .J).

Warning: when h is non-Kahler, its relation to w is
surprisingly complicated!
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CIP9 at k£ distinct points, 0 < k < &,
in general position, or CIP; x CPy.

CPQ#k@% 0 < k<S8,
M= or
5% x S?
k # 1,2 —> admit Kahler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang. ..

Exceptions: CIPo blown up at 1 or 2 points.
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Non-Kahler cases: CPy blown up at 1 or 2 points.
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Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Donaldson /Mabuchi/Chen-Tian:
unique in Kahler class, modulo bihomorphisms.
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On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
%A% — A2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Notice that W has a repeated eigenvalue.
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face, and suppose that h 1s an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then (M*, h, J) is conformally Kdhler!

Key step: show W 4 has a repeated eigenvalue.
Riemannian analog of Goldberg-Sachs theorem:.
When W £ 0. then use Derdzinski’s Theorem.

When W = 0, use global results of Boyer et al.
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VJ=0= R € End(AV) =
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The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d

%W—l—(gt)

where
Bay = VNV + 7YV ) g -

is the Bach tensor of g. Symmetric, trace-free.

— _/gabBab d:ug
t=0

Conformally Einstein =— B =0
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[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

In fact, for Kahler metrics,

1
B = 5 257"+ Hessg(s) + BJ*HeSSO(S)}

where Hessy denotes trace-free part of VV.
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Restriction of W} to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Lemma. If g 1s a Kahler metric on a complex
surface (M*,.]), the following are equivalent:

® g 1s an extremal Kahler metric,

e B=B(J-.J);

)= B(J--) is a closed 2-form,;

® g = g+ 1B is Kahler metric for small t.
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Restriction of W, to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g+1itB

is a family of Kahler metrics, corresponding to

Wi = w + tY
and first variation is
d .
—Wil(g)| = / g™ By, dyig
dt =0

— _/|B‘2 dfig

So the critical metrics of restriction of Wy to
{Kéhler metrics} are Bach-flat Kéhler metrics.



Action Function on Kahler Cone



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1
3272




Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1
3272

. 2 1
52d:“9 = (Cl[w[]g]) +327T2H'7:[w]”2

where JF 1s Futaki invariant.



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1 c1 - [w])? 1
oz [ g = ET AP
— A(l)

where JF 1s Futaki invariant.



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1 c1 - [w])? 1
oz [ g = ET AP
— A(l)

where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).



K c H"Y (M, R) = H*(M,R)
(M Del Pezzo)




K c H"Y (M, R) = H*(M,R)
(M Del Pezzo)



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1 c1 - [w])? 1
oz [ g = ET AP
— A(l)

where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1
3272

¢ - [w])? 1
A+ ol Pl

= A([w])

where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).

Lemma. If g is a Kahler metric on a compact
complex surface (M*,.]), with Kdhler class [w],



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1

BN (¢ - [wp? | 1 y
3272 H

w]?
A(lw])

where JF 1s Futaki invariant.

2
sdpg =

A is function on Kahler cone KK ¢ H?(M,R).

Lemma. If g is a Kahler metric on a compact

complex surface (M*,.]), with Kdihler class [w),
then g satisfies B =0 <—



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1

BN (¢ - [wp? | 1 y
3272 H

w]?
A(lw])

where JF 1s Futaki invariant.

2
sdpg =

A is function on Kahler cone KK ¢ H?(M,R).

Lemma. If g is a Kahler metric on a compact

complex surface (M*,.]), with Kdihler class [w),
then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and



Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1

BN (¢ - [wp? | 1 y
3272 H

w]?
A(lw])

where JF 1s Futaki invariant.

2
sdpg =

A is function on Kahler cone KK ¢ H?(M,R).

Lemma. If g is a Kahler metric on a compact

complex surface (M*,.]), with Kdihler class [w),
then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and

e (W] is a critical point of A: I — R.
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h = 3_29

and uniqueness Theorem A follows.



Theorem. Let (M*,.J) be a Del Pezzo surface.
Then, up to automorphisms and rescaling, there
s a unique Bach-flat Kahler metric g on M.
This metric 1s characterized by the fact that it
minimizes the Calabi functional

C—/ SQdu
M

among all Kdihler metrics on (M?,.J).

Only three cases are non-trivial:

CPy#kCPy, k=1,2,3.
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The non-trivial cases are toric, and the action A
can be directly computed from moment polygon.
Formula involves barycenters, moments of inertia.

L2
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To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —
but quite complicated!

Proof proceeds by showing critical point invariant
under certain discrete automorphisms of M.

Done by showing A convex on appropriate lines.

Similar calculations also led to new existence proof. . .
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[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-Einstein, and such that

® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.

This reconstructs Chen-LeBrun-Weber metric.

Could also reconstruct Page metric this way. ..
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e Control bubbling

— Toric geometry
— Symplectic 2-spheres ~~ Lagrangian 2-spheres
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If bubbling occurs as t; 7 too, (M, €);) contains
symplectic 2-sphere S with area — 0:

Q-] >0, Q- [S]=0.

Since
)y = (1 — t)Cl + )

this implies

C1l - [S] > ().
Adjunction:
2+ 5] -[S] > 0.
But
1S]-[S] < 0.
S0
ST 5] =—-1.

But every such class in M represented by a holo-
morphic curvel So (% = ()1, and we have just

bubbled off a (—1)-curve, as desired!



Theorem C. There is a Kdhler metric g on
CIPo#2CIPy which 1s conformal to an Einstein
metric. Moreover, there is a 1-parameter famaily

[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-Einstein, and such that

® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.



