On

Hermitian, Einstein

4-Manifolds

Claude LeBrun
Stony Brook University
For Eugenio Calabi
For Eugenio Calabi

who discovered the magic link between Einstein manifolds and complex geometry.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric h is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_j = R^{ij}{}_{ij}.$$
If M^{2m} endowed with complex structure J,
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

\[h(J\cdot, J\cdot) = h(\cdot, \cdot). \]
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here $J = \text{integrable almost-complex structure}$.
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here $J = \text{integrable almost-complex structure}$.

Equivalently:
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here $J = \text{integrable almost-complex structure}.$

Equivalently:

In local complex coordinates (z^{1}, \ldots, z^{m}),
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here J = integrable almost-complex structure.

Equivalently:

In local complex coordinates (z^1, \ldots, z^m),

$$h = \sum_{j,k=1}^{m} h_{j\bar{k}} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$
If M^{2m} endowed with complex structure J, a Riemannian metric h called Hermitian if

$$h(J\cdot, J\cdot) = h(\cdot, \cdot).$$

Here $J =$ integrable almost-complex structure.

Equivalently:

In local complex coordinates (z^1, \ldots, z^m),

$$h = \sum_{j,k=1}^{m} h_{j\bar{k}} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

where $[h_{j\bar{k}}]$ Hermitian matrix at each point.
If (M^{2m}, h, J) is Hermitian, then
If (M^{2m}, h, J) is Hermitian, then
\[\omega(\cdot, \cdot) = h(J\cdot, \cdot) \]
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.

In local complex coordinates,
If \((M^{2m}, h, J)\) is Hermitian, then
\[\omega(\cdot, \cdot) = h(J\cdot, \cdot)\]
is a non-degenerate 2-form.

In local complex coordinates,
\[\omega = i \sum_{j,k=1}^{m} h_{jk} \ dz^j \wedge d\bar{z}^k\]
If \((M^{2m}, h, J)\) is Hermitian, then

\[\omega(\cdot, \cdot) = h(J\cdot, \cdot)\]

is a non-degenerate 2-form.

In local complex coordinates,

\[
\omega = i \sum_{j,k=1}^{m} h_{jk} \, d\bar{z}^j \wedge d\bar{z}^k
\]

If \(d\omega = 0\), \((M^{2m}, h, J)\) is called Kähler.
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.

In local complex coordinates,
\[
\omega = i \sum_{j,k=1}^{m} h_{j\bar{k}} \, dz^j \wedge d\bar{z}^k
\]

If \(d\omega = 0, (M^{2m}, h, J)\) is called Kähler.

\[
\iff \quad h_{j\bar{k}} = \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k}
\]
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.

In local complex coordinates,
\[
\omega = i \sum_{j,k=1}^{m} h_{j\bar{k}} \, dz^j \wedge d\bar{z}^k
\]

If \(d\omega = 0\), \((M^{2m}, h, J)\) is called Kähler.

\[
\iff \text{locally}, \exists f \text{ s.t. } h_{j\bar{k}} = \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k}
\]
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.

In local complex coordinates,
\[
\omega = i \sum_{j,k=1}^{m} h_{jk} \, dz^j \wedge d\bar{z}^k
\]

If \(d\omega = 0\), \((M^{2m}, h, J)\) is called Kähler,
and \(\omega\) called the Kähler form.
If \((M^{2m}, h, J)\) is Hermitian, then
\[
\omega(\cdot, \cdot) = h(J\cdot, \cdot)
\]
is a non-degenerate 2-form.

In local complex coordinates,
\[
\omega = i \sum_{j,k=1}^{m} h_{j\bar{k}} \, dz^j \wedge d\bar{z}^k
\]

If \(d\omega = 0\), \((M^{2m}, h, J)\) is called Kähler,
and \(\omega\) called the Kähler form, while

\([\omega] \in H^2(M, \mathbb{R})\) called the Kähler class.
(\(M^n, g\)) : holonomy
(M^n, g): holonomy
(M^n, g): holonomy
(M^n, g): holonomy
(M^n, g): holonomy
\((M^n, g)\): holonomy
(M^n, g): \hbox{holonomy}
(M^n, g): holonomy
\((M^n, g)\): holonomy
(M^n, g): holonomy
(M^n, g): holonomy
(M^n, g): holonomy
\((M^n, g)\): \text{holonomy} \subset O(n)
Kähler metrics:

\((M^{2m}, g)\): \hspace{1cm} \text{holonomy}
Kähler metrics:

$$(M^{2m}, g) \text{ Kähler } \iff \text{holonomy } \subset U(m)$$
Kähler metrics:

\((M^{2m}, g)\) Kähler \iff\ holonomy \subset U(m)\)
Kähler metrics:

\[(M^{2m}, g) \text{ Kähler } \iff \text{holonomy } \subset U(m)\]

Kähler magic:
Kähler metrics:

\((M^{2m}, g) \text{ Kähler } \iff \text{ holonomy } \subset U(m)\)

Kähler magic:

The 2-form

\(ir(J\cdot, \cdot)\)
Kähler metrics:

\((M^{2m}, g)\) Kähler \iff \text{holonomy} \subset U(m)\]

Kähler magic:

The 2-form

\[i \rho(J \cdot, \cdot)\]

is curvature of canonical line bundle \(K = \Lambda^{m,0}\).
Kähler metrics:

\((M^{2m}, g)\) Kähler \iff \text{holonomy} \subset U(m)\)

Kähler magic:

The 2-form

\[\rho = r(J\cdot, \cdot) \]

is called the Ricci form.
Kähler metrics:

\((M^{2m}, g)\) Kähler \iff\ holonomy \subset U(m)\]

Kähler magic:

The 2-form

\[\rho = r(J \cdot, \cdot)\]

is called the Ricci form.

In local complex coordinates

\[r_{j\bar{k}} = -\frac{\partial^2}{\partial z^j \partial \bar{z}^k} \log \det[h_{\ell\bar{m}}]\]
If h is both an Einstein metric and Kähler,
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on $\mathbf{CP}_2 \# \overline{\mathbf{CP}}_2$.
If \(h \) is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2 \). (1979)
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

- Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$. (1979)
- Chen-LeBrun-Weber metric on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:

• Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$. (1979)
• Chen-LeBrun-Weber metric on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$. (2008)
If h is both an Einstein metric and Kähler, it is called a Kähler-Einstein metric.

Gene Calabi laid groundwork for the entire modern theory of Kähler-Einstein metrics.

A profusion of compact complex manifolds now known to admit Kähler-Einstein metrics.

Very few compact Einstein 4-manifolds known which are not Kähler-Einstein!

Two such non-Kähler examples:
- Page metric on $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$. (1979)
- Chen-LeBrun-Weber metric on $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$. (2008)

Both are actually Hermitian.
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
Theorem A. Let \((M^4, J)\) be a compact complex surface,
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M.
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J\cdot, J\cdot) = h.
\]
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then either

- \((M, J, h)\) is Kähler-Einstein; or
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then either

\begin{itemize}
 \item \((M, J, h)\) is Kähler-Einstein; or
 \item \(M \cong \mathbb{CP}^2 \# \overline{\mathbb{CP}^2}\), and \(h\) is a constant times the Page metric; or
\end{itemize}
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then either

- \((M, J, h)\) is Kähler-Einstein; or
- \(M \cong \mathbb{CP}_2 \# \overline{\mathbb{CP}_2}\), and \(h\) is a constant times the Page metric; or
- \(M \cong \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}\) and \(h\) is a constant times the Chen-LeBrun-Weber metric.
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)
Recall:

\[\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2. \]

Connected sum \#:

\[\includegraphics[width=0.5\textwidth]{connected_sum.png} \]
Recall:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented} \ \mathbb{CP}_2. \]

Connected sum \#:
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.\)

Connected sum \#:

\[
\begin{array}{c}
\hline
\end{array}
\]
Recall:

\[\overline{\mathbb{C}P^2} = \text{reverse oriented } \mathbb{C}P^2. \]

Connected sum #:

\[\text{Diagram of connected sum} \]
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:
Recall:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$

Connected sum $\#$:

![Diagram of connected sum](image-url)
Recall:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2$.

Connected sum #:
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:

Blowing up:
Recall:

$\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2$.

Connected sum $\#$:

Blowing up:

If N is a complex surface,
Recall:

$$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$$

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$.
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \(\# \):

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \).
Recall:

$\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2$.

Connected sum $\#$:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}^2}$$
Recall:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]

Connected sum #:

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \) to obtain blow-up

\[M \approx N \# \overline{\mathbb{CP}_2} \]

in which new \(\mathbb{CP}_1 \) has self-intersection \(-1\).
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either

- (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$, and h is a constant times the Page metric; or
- $M \approx \mathbb{CP}^2 \# 2\overline{\mathbb{CP}}^2$ and h is a constant times the Chen-LeBrun-Weber metric.
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J\cdot, J\cdot) = h.
\]

Then either

- \((M, J, h)\) is Kähler-Einstein; or
- \(M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}_2}\), and \(h\) is a constant times the Page metric; or
- \(M \approx \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}\) and \(h\) is a constant times the Chen-LeBrun-Weber metric.

Exceptional cases: \(\mathbb{CP}_2\) blown up at 1 or 2 points.
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M)\) “has a sign.”
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \iff \(c_1(M)\) “has a sign.”

More precisely, there is a Hermitian, Einstein metric \(h\) with Einstein constant \(\lambda\) \iff \((M, J)\) carries a Kähler class \([\omega]\) such that

\[
c_1(M) = \lambda [\omega].
\]
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J \iff c_1(M) \text{ "has a sign."}\)

More precisely, there is a Hermitian, Einstein metric \(h\) with Einstein constant \(\lambda \iff (M, J)\) carries a Kähler class \([\omega]\) such that

\[
c_1(M) = \lambda [\omega].
\]

For fixed \(\lambda \neq 0\), this \(h\) is moreover unique modulo biholomorphisms of \((M, J)\).
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M)\) “has a sign.”

More precisely, there is a Hermitian, Einstein metric \(h\) with Einstein constant \(\lambda\) \(\iff\) \((M, J)\) carries a Kähler class \([\omega]\) such that

\[c_1(M) = \lambda[\omega].\]

For fixed \(\lambda \neq 0\), this \(h\) is moreover unique modulo biholomorphisms of \((M, J)\).

Kähler case: Calabi, Aubin, Yau, Siu, Tian, …
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M)\) “has a sign.”

More precisely, there is a Hermitian, Einstein metric \(h\) with Einstein constant \(\lambda\) \(\iff\) \((M, J)\) carries a Kähler class \([\omega]\) such that
\[
c_1(M) = \lambda [\omega].
\]

For fixed \(\lambda \neq 0\), this \(h\) is moreover unique modulo biholomorphisms of \((M, J)\).

Kähler case: Calabi, Aubin, Yau, Siu, Tian, ...

Non-Kähler case: Chen, LeBrun, Weber, ...
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M)\) “has a sign.”

More precisely, there is a Hermitian, Einstein metric \(h\) with Einstein constant \(\lambda\) \(\iff\) \((M, J)\) carries a Kähler class \([\omega]\) such that

\[c_1(M) = \lambda[\omega]. \]

For fixed \(\lambda \neq 0\), this \(h\) is moreover unique modulo biholomorphisms of \((M, J)\).

Warning: when \(h\) is non-Kähler, its relation to \(\omega\) is surprisingly complicated!
Del Pezzo surfaces:
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Del Pezzo surfaces:

$$(M^4, J)$$ for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0.$”
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Fano manifolds of complex dimension 2.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}^2\) at \(k\) distinct points, \(0 \leq k \leq 8\),
in general position,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}^2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: \(\text{“}c_1 > 0\text{”}\).

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \simeq \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
\text{or} \\
S^2 \times S^2
\end{cases}$$
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

\[M \approx \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
\text{or} \\
S^2 \times S^2
\end{cases} \]

\(k \neq 1, 2 \implies \text{admit Kähler-Einstein metrics.}\)
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[ω]$. Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

$$M \approx \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
\text{or} \\
S^2 \times S^2
\end{cases}$$

$k \neq 1, 2 \implies$ admit Kähler-Einstein metrics.

Siu, Tian-Yau, Tian, Chen-Wang...
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

\[
M \approx \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
o & \text{or} \\
S^2 \times S^2
\end{cases}
\]

\(k \neq 1, 2 \implies \text{admit Kähler-Einstein metrics.}\)

Siu, Tian-Yau, Tian, Chen-Wang…

Exceptions: \(\mathbb{CP}_2\) blown up at 1 or 2 points.
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J\) \iff \(c_1(M)\) “has a sign.”
Theorem B. Let \((M^4, J)\) be a compact complex surface. Then there is an Einstein metric \(h\) on \(M\) which is Hermitian with respect to \(J \iff c_1(M) \text{ "has a sign."}\)

For fixed \(\lambda \neq 0\), this \(h\) is moreover unique modulo biholomorphisms of \((M, J)\).
Theorem B. Let (M^4, J) be a compact complex surface. Then there is an Einstein metric h on M which is Hermitian with respect to $J \iff c_1(M) \text{ “has a sign.”}$

For fixed $\lambda \neq 0$, this h is moreover unique modulo biholomorphisms of (M, J).

Non-Kähler cases: \mathbb{CP}^2 blown up at 1 or 2 points.
Lemma. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J\cdot, J\cdot) = h.
\]
Then \((M^4, h, J)\) is conformally Kähler!
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J\cdot, J\cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

In other words,

\[
h = fg
\]

∃ Kähler metric \(g\), smooth function \(f : M \to \mathbb{R}^+\).
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J\cdot, J\cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J \cdot, J \cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure \(J\) on \(S^3 \times S^3\).
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J\cdot, J\cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure \(J\) on \(S^3 \times S^3\).

Product metric is Einstein and Hermitian.
Lemma. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

But $S^3 \times S^3$ has no Kähler metric because $H^2 = 0$.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure \(J\) on \(S^3 \times S^3\).

Product metric is Einstein and Hermitian.

But \(S^3 \times S^3\) has no Kähler metric because \(H^2 = 0\).

Similarly for \(S^{2n+1} \times S^{2m+1}\).
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J \cdot, J \cdot) = h.
\]
Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then \((M^4, h, J)\) is conformally Kähler!

- Strictly four-dimensional phenomenon: must have

\[h = fg \]

for some Kähler metric \(g\), smooth function \(f\).
Lemma. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then (M^4, h, J) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

$$h = fg$$

for some Kähler metric g, smooth function f.

Actually, g must be an extremal Kähler metric in sense of Calabi!
Calabi:
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_{M} s^2 d\mu_g \]
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R}) \) fixed.

Euler-Lagrange equations
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \(\iff \)

\(\nabla^{1,0}s \) is a holomorphic vector field.
Calabi:

Extremal Kähler metrics $= \text{critical points of}$

$$g \mapsto \int_M s^2 d\mu_g$$

where $g = g_\omega$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

$$\nabla \nabla s = (\nabla \nabla s)(J\cdot, J\cdot).$$
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \(\iff \)

\(J\nabla s \) is a Killing field.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \(\iff \)

\(J \nabla s \) is a Killing field.

X.X. Chen: always minimizers.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \(\iff \)

\(J\nabla s \) is a Killing field.

Donaldson/Mabuchi/Chen-Tian:
unique in Kähler class, modulo bihomorphisms.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

\[h = fg \]

for some Kähler metric \(g\), smooth function \(f\).

Actually, \(g\) must be an extremal Kähler metric in sense of Calabi!
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then \((M^4, h, J)\) is conformally Kähler!

Strictly four-dimensional phenomenon: must have

\[h = fg \]

for some Kähler metric \(g\), smooth function \(f\).

Actually, \(g\) must be an extremal Kähler metric in sense of Calabi!

What’s so special about dimension four?
Special character of dimension 4:
Special character of dimension 4:

On oriented \((M^4, g)\),

\[
\Lambda^2 = \Lambda^+ \oplus \Lambda^-
\]
Special character of dimension 4:

On oriented \((M^4, g)\),
\[
\Lambda^2 = \Lambda^+ \oplus \Lambda^-
\]
where \(\Lambda^\pm\) are \((\pm 1)\)-eigenspaces of
\[
\star : \Lambda^2 \to \Lambda^2,
\]
\[
\star^2 = 1.
\]
Special character of dimension 4:

On oriented \((M^4, g)\),

\[
\Lambda^2 = \Lambda^+ \oplus \Lambda^-
\]

where \(\Lambda^{\pm}\) are \((\pm 1)\)-eigenspaces of

\[
\star : \Lambda^2 \to \Lambda^2,
\]

\[
\star^2 = 1.
\]

\(\Lambda^+\) self-dual 2-forms.
\(\Lambda^-\) anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

\[\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2 \]

splits into 4 irreducible pieces:

\[\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & \mathring{r} \\
\mathring{r} & W_- + \frac{s}{12}
\end{pmatrix}. \]
Riemann curvature of g

\[\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2 \]

splits into 4 irreducible pieces:

\[
\begin{array}{c|c|c}
\Lambda^+ & W_+ + \frac{s}{12} & \hat{r} \\
\hline
\Lambda^- & \hat{r} & W_- + \frac{s}{12}
\end{array}
\]
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

$$\begin{array}{ccc}
\Lambda^+ & W_+ + \frac{s}{12} & \mathring{r} \\
\Lambda^- & \mathring{r} & W_- + \frac{s}{12}
\end{array}$$

where

$s = \text{scalar curvature}$

$\mathring{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature}$

$W_- = \text{anti-self-dual Weyl curvature}$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

$$\begin{array}{ccc}
\Lambda^+ & W_+ + \frac{s}{12} & \hat{\mathcal{R}} \\
\Lambda^- & \hat{\mathcal{R}} & W_- + \frac{s}{12} \\
\end{array}$$

where

$s = \text{scalar curvature}$

$\hat{\mathcal{R}} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature} \ (\text{conformally invariant})$

$W_- = \text{anti-self-dual Weyl curvature}$
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^- \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R} \omega \oplus \Re(\Lambda^{2,0}) \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \text{Re}(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^\perp \]

\[\Lambda^+ = \mathbb{R} \omega \oplus \text{Re}(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[W_+ + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix} \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \mathbb{R}e(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[W_+ + \frac{s}{12} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{s}{4} \end{pmatrix} \]
Kähler case:

$$\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^-$$

$$\Lambda^+ = \mathbb{R} \omega \oplus \mathbb{R} e(\Lambda^{2,0})$$

$$\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies$$

$$W_+ = \begin{pmatrix} -\frac{s}{12} & \frac{s}{6} \\ -\frac{s}{12} & -\frac{s}{6} \end{pmatrix}$$
Kähler case:

\[
\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-
\]

\[
\Lambda^+ = \mathbb{R}\omega \oplus \Re(\Lambda^{2,0})
\]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[
W_+ = \begin{pmatrix}
-\frac{s}{12} & -\frac{s}{12} \\
-\frac{s}{12} & \frac{s}{6}
\end{pmatrix}
\]

Notice that \(W_+\) has a repeated eigenvalue.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J\cdot, J\cdot) = h.
\]
Then \((M^4, h, J)\) is conformally Kähler!
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):
\[
h(J\cdot, J\cdot) = h.
\]
Then \((M^4, h, J)\) is conformally Kähler!

Key step: show \(W_+\) has a repeated eigenvalue.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J\cdot, J\cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

Key step: show \(W_+\) has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.
Lemma. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J., J.) = h.$$

Then (M^4, h, J) is conformally Kähler!

Key step: show W_+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

$$\nabla \cdot W_+ = 0,$$ while $T^{1,0}M$ isotropic & involutive.
Lemma. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:
\[h(J\cdot, J\cdot) = h. \]
Then (M^4, h, J) is conformally Kähler!

Key step: show W_+ has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

When $W_+ \neq 0$, then use Derdziński’s Theorem.
Lemma. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[
h(J\cdot, J\cdot) = h.
\]

Then \((M^4, h, J)\) is conformally Kähler!

Key step: show \(W_+\) has a repeated eigenvalue.

Riemannian analog of Goldberg-Sachs theorem.

When \(W_+ \neq 0\), then use Derdziński’s Theorem.

When \(W_+ \equiv 0\), use global results of Boyer et al.
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \mathbb{R}e(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[W_+ = \begin{pmatrix} -\frac{s}{12} & -\frac{s}{12} \\ \frac{s}{6} & \frac{s}{6} \end{pmatrix} \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \mathbb{R}e(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[|W_+|^2 = \frac{s^2}{24} \]
The Bach Tensor
The Bach Tensor

Conformally invariant Riemannian functional:

$$\mathcal{W}_+(g) = 2 \int_M |W_+|^2_g \, d\mu_g.$$
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}_+(g) = 2 \int_M |W_+|^2_g \, d\mu_g. \]

1-parameter family of metrics

\[g_t := g + t\dot{g} + O(t^2) \]

First variation

\[\left. \frac{d}{dt} \mathcal{W}_+(g_t) \right|_{t=0} = - \int \dot{g}^{ab} B_{ab} \, d\mu_g \]
The Bach Tensor

Conformally invariant Riemannian functional:
\[\mathcal{W}_+(g) = 2 \int_M |W_+|^2_g \, d\mu_g. \]

1-parameter family of metrics
\[g_t := g + t\dot{g} + O(t^2) \]

First variation
\[\left. \frac{d}{dt} \mathcal{W}_+(g_t) \right|_{t=0} = - \int \dot{g}^{ab} B_{ab} \, d\mu_g \]

where
\[B_{ab} := (2\nabla^c \nabla^d + \ddot{\kappa}^{cd})(W_+)_{acbd}. \]

is the Bach tensor of \(g \). Symmetric, trace-free.
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}_+(g) = 2 \int_M |W_+|^2_g \, d\mu_g. \]

1-parameter family of metrics

\[g_t := g + t\dot{g} + O(t^2) \]

First variation

\[
\frac{d}{dt} \mathcal{W}_+(g_t) \bigg|_{t=0} = - \int \dot{g}^{ab} B_{ab} \, d\mu_g
\]

where

\[B_{ab} := (2\nabla^c \nabla^d + \mathring{\mathring{r}}^{cd})(W_+)_{acbd}. \]

is the Bach tensor of \(g \). Symmetric, trace-free.

\[\nabla^a B_{ab} = 0 \]
The Bach Tensor

Conformally invariant Riemannian functional:
\[
\mathcal{W}_+(g) = 2 \int_M |W_+|^2_g \, d\mu_g.
\]

1-parameter family of metrics
\[
g_t := g + t\dot{g} + O(t^2)
\]

First variation
\[
\left. \frac{d}{dt} \mathcal{W}_+(g_t) \right|_{t=0} = - \int \dot{g}^{ab} B_{ab} \, d\mu_g
\]
where
\[
B_{ab} := (2\nabla^c \nabla^d + \dot{r}^{cd})(W_+)_{acbd}.
\]
is the Bach tensor of \(g\). Symmetric, trace-free.

Conformally Einstein \(\implies B = 0\)
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

In fact, for Kähler metrics,

$$B = \frac{1}{12} \left[2s r + \text{Hess}_0(s) + 3 J^* \text{Hess}_0(s) \right]$$

where Hess_0 denotes trace-free part of $\nabla \nabla$.
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J), the following are equivalent:
Restriction of \(\mathcal{W}_+ \) to Kähler metrics?

On Kähler metrics,

\[
\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu
\]

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If \(g \) is a Kähler metric on a complex surface \((M^4, J)\), the following are equivalent:

- \(g \) is an extremal Kähler metric;
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J), the following are equivalent:

• g is an extremal Kähler metric;
• $B = B(J\cdot, J\cdot)$;
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J), the following are equivalent:

- g is an extremal Kähler metric;
- $B = B(J\cdot, J\cdot)$;
- $\psi = B(J\cdot, \cdot)$ is a closed 2-form;
Restriction of \mathcal{W}_+ to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J), the following are equivalent:

- g is an extremal Kähler metric;
- $B = B(J\cdot, J\cdot)$;
- $\psi = B(J\cdot, \cdot)$ is a closed 2-form;
- $g_t = g + tB$ is Kähler metric for small t.
Restriction of \mathcal{W}_+ to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics,
Restriction of \mathcal{W}_+ to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to
Restriction of \mathcal{W}_+ to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\left. \frac{d}{dt} \mathcal{W}_+(g_t) \right|_{t=0} = \int \dot{g}^{ab} B_{ab} \ d\mu_g$$

$$= - \int |B|^2 \ d\mu_g$$
Restriction of \mathcal{W}_+ to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\frac{d}{dt}\mathcal{W}_+(g_t)\bigg|_{t=0} = \int \dot{g}^{ab}B_{ab} \, d\mu_g$$

$$= - \int |B|^2 \, d\mu_g$$

So the critical metrics of restriction of \mathcal{W}_+ to \{Kähler metrics\} are Bach-flat Kähler metrics.
Action Function on Kähler Cone
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| F[\omega] \|^2
\]
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|F[\omega]\|^2
\]

where \(F\) is Futaki invariant.
Action Function on Kähler Cone

For any extremal Kähler (M^4, g, J),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| \mathcal{F}[\omega] \|^2
=: \mathcal{A}([\omega])
\]

where \mathcal{F} is Futaki invariant.
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|F_\omega\|^2
\]

\[=: \mathcal{A}([\omega])\]

where \(\mathcal{F}\) is Futaki invariant.

\(\mathcal{A}\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).
\(\mathcal{K} \subset H^{1,1}(M, \mathbb{R}) = H^{2}(M, \mathbb{R}) \)

\((M\ \text{Del Pezzo})\)
\[\mathcal{K} \subset H^{1,1}(M, \mathbb{R}) = H^2(M, \mathbb{R}) \]

(M Del Pezzo)
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|F[\omega]\|^2
\]

\[=: \mathcal{A}([\omega])\]

where \(\mathcal{F}\) is Futaki invariant.

\(\mathcal{A}\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \left(\frac{c_1 \cdot [\omega]}{[\omega]^2}\right)^2 + \frac{1}{32\pi^2} \|F[\omega]\|^2
\]

\[=: A([\omega])\]

where \(F\) is Futaki invariant.

\(A\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).

Lemma. If \(g\) is a Kähler metric on a compact complex surface \((M^4, J)\), with Kähler class \([\omega]\),
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| \mathcal{F}[\omega] \|^2
=: \mathcal{A}([\omega])
\]

where \(\mathcal{F}\) is Futaki invariant.

\(\mathcal{A}\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).

Lemma. If \(g\) is a Kähler metric on a compact complex surface \((M^4, J)\), with Kähler class \([\omega]\), then \(g\) satisfies \(B = 0 \iff \)
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| \mathcal{F} [\omega] \|^2
\]

\[=: A([\omega])\]

where \(\mathcal{F}\) is Futaki invariant.

\(A\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).

Lemma. If \(g\) is a Kähler metric on a compact complex surface \((M^4, J)\), with Kähler class \([\omega]\), then \(g\) satisfies \(B = 0 \iff\)

- \(g\) is an extremal Kähler metric; and
Action Function on Kähler Cone

For any extremal Kähler \((M^4, g, J)\),

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| \mathcal{F}[\omega] \|^2
\]

\[=: A([\omega])\]

where \(\mathcal{F}\) is Futaki invariant.

\(A\) is function on Kähler cone \(\mathcal{K} \subset H^2(M, \mathbb{R})\).

Lemma. If \(g\) is a Kähler metric on a compact complex surface \((M^4, J)\), with Kähler class \([\omega]\), then \(g\) satisfies \(B = 0 \iff\)

- \(g\) is an extremal Kähler metric; and
- \([\omega]\) is a critical point of \(A : \mathcal{K} \rightarrow \mathbb{R}\).
Lemma. Suppose compact complex surface (M^4, J) admits a Hermitian h which is Einstein, but not Kähler. Then (M^4, J) is a Del Pezzo surface.
Lemma. Suppose compact complex surface \((M^4, J)\) admits a Hermitian \(h\) which is Einstein, but not Kähler. Then \((M^4, J)\) is a Del Pezzo surface.

Lemma. If \((M^4, J)\) is a Del Pezzo surface, any extremal Kähler metric \(g\) on \(M\) has scalar curvature \(s > 0\).
Lemma. Suppose compact complex surface \((M^4, J)\) admits a Hermitian \(h\) which is Einstein, but not Kähler. Then \((M^4, J)\) is a Del Pezzo surface.

Lemma. If \((M^4, J)\) is a Del Pezzo surface, any extremal Kähler metric \(g\) on \(M\) has scalar curvature \(s > 0\).

Lemma. Suppose that \(g\) is a Bach-flat Kähler metric on a Del Pezzo surface \((M^4, J)\). Then the Hermitian metric \(h = s^{-2}g\) is Einstein, with positive Einstein constant.
Lemma. Suppose compact complex surface (M^4, J) admits a Hermitian h which is Einstein, but not Kähler. Then (M^4, J) is a Del Pezzo surface.

Lemma. If (M^4, J) is a Del Pezzo surface, any extremal Kähler metric g on M has scalar curvature $s > 0$.

Lemma. Suppose that g is a Bach-flat Kähler metric on a Del Pezzo surface (M^4, J). Then the Hermitian metric $h = s^{-2}g$ is Einstein, with positive Einstein constant.

Lemma. Conversely, any Hermitian, Einstein metric on a Del Pezzo surface arises in this way.
Lemma. Suppose compact complex surface \((M^4, J)\) admits a Hermitian \(h\) which is Einstein, but not Kähler. Then \((M^4, J)\) is a Del Pezzo surface.

Lemma. If \((M^4, J)\) is a Del Pezzo surface, any extremal Kähler metric \(g\) on \(M\) has scalar curvature \(s > 0\).

Lemma. Suppose that \(g\) is a Bach-flat Kähler metric on a Del Pezzo surface \((M^4, J)\). Then the Hermitian metric \(h = s^{-2}g\) is Einstein, with positive Einstein constant.

\[
0 = 6s^{-1}B = \dot{r} + 2s^{-1}\text{Hess}_0(s)
\]
Lemma. Suppose compact complex surface \((M^4, J)\) admits a Hermitian \(h\) which is Einstein, but not Kähler. Then \((M^4, J)\) is a Del Pezzo surface.

\[
\rho + 2i\partial\bar{\partial}\log s > 0.
\]
Lemma. Suppose compact complex surface \((M^4, J)\) admits a Hermitian \(h\) which is Einstein, but not Kähler. Then \((M^4, J)\) is a Del Pezzo surface.

Lemma. If \((M^4, J)\) is a Del Pezzo surface, any extremal Kähler metric \(g\) on \(M\) has scalar curvature \(s > 0\).

Lemma. Suppose that \(g\) is a Bach-flat Kähler metric on a Del Pezzo surface \((M^4, J)\). Then the Hermitian metric \(h = s^{-2}g\) is Einstein, with positive Einstein constant.

Lemma. Conversely, any Hermitian, Einstein metric on a Del Pezzo surface arises in this way.
Theorem. Let \((M^4, J)\) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric \(g\) on \(M\). This metric is characterized by the fact that it minimizes the Calabi functional

\[
 C = \int_M s^2 d\mu
\]

among all Kähler metrics on \((M^4, J)\).
Theorem. Let \((M^4, J)\) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric \(g\) on \(M\). This metric is characterized by the fact that it minimizes the Calabi functional

\[C = \int_M s^2 d\mu \]

among all Kähler metrics on \((M^4, J)\).

Hermitian, Einstein metric then given by

\[h = s^{-2} g \]

and uniqueness Theorem A follows.
Theorem. Let (M^4, J) be a Del Pezzo surface. Then, up to automorphisms and rescaling, there is a unique Bach-flat Kähler metric g on M. This metric is characterized by the fact that it minimizes the Calabi functional

$$C = \int_M s^2 d\mu$$

among all Kähler metrics on (M^4, J).

Only three cases are non-trivial:

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k = 1, 2, 3.$$
The non-trivial cases are toric, and the action A can be directly computed from moment polygon.
The non-trivial cases are toric, and the action \mathcal{A} can be directly computed from moment polygon. Formula involves barycenters, moments of inertia.

\[
\mathcal{A}([\omega]) = \frac{|\partial P|^2}{2} \left(\frac{1}{|P|} + \vec{\Omega} \cdot \Pi^{-1} \vec{\Omega} \right)
\]
To prove Theorem, show that

\[A : \mathcal{K} \to \mathbb{R} \]

has unique critical point for relevant \(M \).
To prove Theorem, show that

\[A : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

Here \(\mathcal{K} = \mathcal{K}/\mathbb{R}^+ \).
To prove Theorem, show that

\[\mathcal{A} : \tilde{\mathcal{K}} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

Here \(\tilde{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+ \).

\(\mathcal{A} \) is explicit rational function —
3[3 + 28\gamma + 96\gamma^2 + 168\gamma^3 + 164\gamma^4 + 80\gamma^5 + 16\beta^6 (1 + \gamma)^3 + 16\beta^6 (1 + \beta + \gamma)^3 + 16\beta^5 (5 + 24\gamma + 43\gamma^2 + 37\gamma^3 + 15\gamma^4 + 2\gamma^5) + 4\beta^4 (41 + 228\gamma + 478\gamma^2 + 496\gamma^3 + 263\gamma^4 + 60\gamma^5 + 4\gamma^6) + 8\beta^3 (21 + 135\gamma + 326\gamma^2 + 392\gamma^3 + 248\gamma^4 + 74\gamma^5 + 8\gamma^6)] + 4\beta^2 (7 + 58\gamma + 176\gamma^2 + 270\gamma^3 + 228\gamma^4 + 96\gamma^5 + 16\gamma^6) + 4\beta^2 (24 + 176\gamma + 479\gamma^2 + 452\gamma^3 + 478\gamma^4 + 172\gamma^5 + 245\gamma^6) + 16\beta^5 (5 + 3\beta^5 + 24\gamma + 43\gamma^2 + 37\gamma^3 + 15\gamma^4 + 2\gamma^5 + \beta^2 (15 + 14\gamma) + \beta^3 (37 + 70\gamma + 30\gamma^2) + \beta^2 (43 + 123\gamma + 108\gamma^2 + 30\gamma^3) + \beta (24 + 92\gamma + 123\gamma^2 + 70\gamma^3) + 14\gamma^4)] + 4\beta^4 (41 + 43\gamma^6 + 228\gamma + 478\gamma^2 + 496\gamma^3 + 263\gamma^4 + 60\gamma^5 + 4\gamma^6) + 16\beta^4 (60 + 56\gamma) + \beta^2 (263 + 476\gamma + 106\gamma^2) + 8\beta^3 (62 + 169\gamma + 139\gamma^2 + 35\gamma^3) + 2\beta^2 (239 + 876\gamma + 1089\gamma^2 + 556\gamma^3 + 98\gamma^4) + 4\beta (57 + 263\gamma + 438\gamma^2 + 338\gamma^3 + 119\gamma^4 + 14\gamma^5)] + 8\alpha^3 (21 + 135\gamma + 326\gamma^2 + 392\gamma^3 + 248\gamma^4 + 74\gamma^5 + 8\gamma^6) + 8\beta^6 (1 + \gamma) + 2\beta^5 (37 + 70\gamma + 30\gamma^2) + 4\beta^4 (62 + 169\gamma + 139\gamma^2 + 35\gamma^3) + 4\beta^3 (98 + 353\gamma + 428\gamma^2 + 210\gamma^3 + 35\gamma^4) + 2\beta^2 (163 + 735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + \beta (135 + 736\gamma + 1470\gamma^2 + 1412\gamma^3 + 676\gamma^4 + 140\gamma^5 + 8\gamma^6)] + 4\alpha (7 + 58\gamma + 176\gamma^2 + 270\gamma^3 + 228\gamma^4 + 96\gamma^5 + 16\gamma^6 + 16\beta^4 (1 + \gamma)^3 + 4\beta^5 (24 + 92\gamma + 123\gamma^2 + 70\gamma^3 + 14\gamma^4) + 4\beta^4 (57 + 263\gamma + 438\gamma^2 + 338\gamma^3 + 119\gamma^4 + 14\gamma^5) + 2\beta^3 (135 + 736\gamma + 1470\gamma^2 + 1412\gamma^3 + 676\gamma^4 + 140\gamma^5 + 8\gamma^6)] + 4\beta^2 (44 + 278\gamma + 645\gamma^2 + 735\gamma^3 + 438\gamma^4 + 123\gamma^5 + 12\gamma^6) + 2\beta (29 + 216\gamma + 556\gamma^2 + 736\gamma^3 + 526\gamma^4 + 184\gamma^5 + 24\gamma^6) + 4\beta^2 (24 + 176\gamma + 479\gamma^2 + 652\gamma^3 + 478\gamma^4 + 172\gamma^5 + 24\gamma^6 (1 + \gamma)^2 + 4\beta^5 (43 + 123\gamma + 108\gamma^2 + 30\gamma^3) + 2\beta^4 (239 + 876\gamma + 1089\gamma^2 + 556\gamma^3 + 98\gamma^4) + 4\beta^3 (163 + 735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + 4\beta^2 (44 + 278\gamma + 645\gamma^2 + 735\gamma^3 + 438\gamma^4 + 123\gamma^5 + 12\gamma^6) + \beta^2 (479 + 258\gamma + 505\gamma^2 + 471\gamma^3 + 217\gamma^4 + 432\gamma^5 + 24\gamma^6)]}} + [1 + 10\gamma + 36\gamma^2 + 64\gamma^3 + 60\gamma^4 + 24\gamma^5 + 24\gamma^6 (1 + \gamma)^5 + 24\gamma^6 (1 + \beta + \gamma)^5 + 12\gamma^6 (1 + \gamma)^2 (5 + 20\gamma + 23\gamma^2 + 10\gamma^3) + 16\beta^3 (4 + 28\gamma + 72\gamma^2 + 90\gamma^3 + 57\gamma^4 + 15\gamma^5) + 12\beta^3 (3 + 24\gamma + 69\gamma^2 + 96\gamma^3 + 68\gamma^4 + 20\gamma^5) + 2\beta (5 + 45\gamma + 144\gamma^2 + 224\gamma^3 + 180\gamma^4 + 60\gamma^5) + 12\beta^2 (1 + \beta + \gamma)^2 (5 + 20\gamma + 23\gamma^2 + 10\gamma^3 + 10\beta^2 (1 + \gamma) + \beta^2 (23 + 46\gamma + 16\gamma^2) + 2\beta (18 + 30\gamma + 23\gamma^2 + 5\gamma^3)) + 16\beta^3 (4 + 28\gamma + 72\gamma^2 + 90\gamma^3 + 57\gamma^4 + 15\beta^3 (1 + \gamma) + 3\beta^3 (19 + 57\gamma + 50\gamma^2 + 13\gamma^3) + 3\beta^3 (30 + 120\gamma + 155\gamma^2 + 78\gamma^3 + 15\gamma^4) + 3\beta^3 (24 + 120\gamma + 206\gamma^2 + 155\gamma^3 + 50\gamma^4 + 5\gamma^5)] + \beta (28 + 168\gamma + 360\gamma^2 + 360\gamma^3 + 171\gamma^4 + 30\gamma^5)] + 12\beta^2 (3 + 24\gamma + 69\gamma^2 + 96\gamma^3 + 68\gamma^4 + 20\gamma^5 + 24\gamma^6 (1 + \gamma)^3 + \beta^3 (88 + 272\gamma + 366\gamma^2 + 200\gamma^3 + 36\gamma^4) + 4\beta^3 (24 + 120\gamma + 206\gamma^2 + 155\gamma^3 + 50\gamma^4 + 5\gamma^5) + 2\beta (12 + 84\gamma + 207\gamma^2 + 240\gamma^3 + 136\gamma^4 + 30\gamma^5) + \beta^2 (69 + 414\gamma + 864\gamma^2 + 824\gamma^3 + 366\gamma^4 + 60\gamma^5)] + 2\beta (5 + 45\gamma + 144\gamma^2 + 224\gamma^3 + 180\gamma^4 + 60\gamma^5 + 60\beta^5 (1 + \gamma)^4 + 12\beta^4 (15 + 75\gamma + 136\gamma^2 + 114\gamma^3 + 43\gamma^4 + 5\gamma^5) + 12\beta^2 (12 + 84\gamma + 207\gamma^2 + 240\gamma^3 + 136\gamma^4 + 30\gamma^5) + 8\beta^3 (28 + 168\gamma + 360\gamma^2 + 360\gamma^3 + 171\gamma^4 + 30\gamma^5) + 3\beta (15 + 120\gamma + 336\gamma^2 + 448\gamma^3 + 300\gamma^4 + 80\gamma^5)]}
To prove Theorem, show that

$$A : \mathcal{K} \rightarrow \mathbb{R}$$

has unique critical point for relevant M.

Here $\mathcal{K} = \mathcal{K}/\mathbb{R}^+$.

A is explicit rational function — but quite complicated!
To prove Theorem, show that

$$\mathcal{A} : \mathcal{K} \to \mathbb{R}$$

has unique critical point for relevant M.

Here $\mathcal{K} = \mathcal{K}/\mathbb{R}^+$.

\mathcal{A} is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.
To prove Theorem, show that

\[\mathcal{A} : \tilde{\mathcal{K}} \to \mathbb{R} \]

has unique critical point for relevant \(M \).

Here \(\tilde{\mathcal{K}} = \mathcal{K}/\mathbb{R}^+ \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of \(M \).

Done by showing \(\mathcal{A} \) convex on appropriate lines.
To prove Theorem, show that

\[\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

Here \(\mathcal{K} = \mathcal{K}/\mathbb{R}^+ \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of \(M \).

Done by showing \(\mathcal{A} \) convex on appropriate lines.

Final step then just calculus in one variable. . .
To prove Theorem, show that

$$\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R}$$

has unique critical point for relevant M.

Here $\mathcal{K} = \mathcal{K}/\mathbb{R}^+$.

\mathcal{A} is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under certain discrete automorphisms of M.

Done by showing \mathcal{A} convex on appropriate lines.

Similar calculations also led to new existence proof...
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric.
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$
Theorem C. There is a Kähler metric \(g \) on \(\mathbb{CP}_2 \# 2 \bar{\mathbb{CP}}_2 \) which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

\[
[0, 1) \ni t \mapsto g_t
\]

of extremal Kähler metrics on \(\mathbb{CP}_2 \# 3 \bar{\mathbb{CP}}_2 \) s.t.
Theorem C. There is a Kähler metric g on $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ s.t.

- g_0 is Kähler-Einstein, and such that
Theorem C. There is a Kähler metric g on $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}}^2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}}^2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense for some $t_j \to 1$.
Theorem C. There is a Kähler metric g on $\mathbb{CP}^2 \# 2 \overline{\mathbb{CP}}^2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}^2 \# 3 \overline{\mathbb{CP}}^2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense for some $t_j \to 1$.

This reconstructs Chen-LeBrun-Weber metric.
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $\forall t \in [0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.

• g_0 is Kähler-Einstein, and such that
• $g_{t_j} \to g$ in the Gromov-Hausdorff sense for some $t_j \to 1$.

This reconstructs Chen-LeBrun-Weber metric.

Could also reconstruct Page metric this way...
Ingredients:
Ingredients:

- Continuity method
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]
Ingredients:

- Continuity method

\[\Omega_t = (1 - t) c_1 + t \Omega \]

- LeBrun-Simanca
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.
Ingredients:

- **Continuity method**
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- **LeBrun-Simanca**
 - Inverse function theorem \(\Rightarrow \) openness.

- **Chen-Weber**
Ingredients:

- Continuity method

 \[\Omega_t = (1 - t) c_1 + t \Omega \]

- LeBrun-Simanca

 - Inverse function theorem \implies openness.

- Chen-Weber

 - Gromov-Hausdorff convergence
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]
- LeBrun-Simanca
 - Inverse function theorem ⇒ openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence...
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 – Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 – Gromov-Hausdorff convergence . . .

- Sobolev Control
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow\) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence . . .

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet . . .

- Control bubbling
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence . . .

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet . . .

- Control bubbling
 - Toric geometry
Any bubble must be toric, scalar-flat Kähler, ALE:
Any bubble must be toric, scalar-flat Kähler, ALE:

Must contain a holomorphic 2-sphere S with

$$[S] \cdot [S] < 0.$$
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence…

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet…

- Control bubbling
 - Toric geometry
 - Symplectic 2-spheres \(\leadsto \) Lagrangian 2-spheres
If bubbling occurs as $t_j \nearrow t_\infty$,
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$
If bubbling occurs as \(t_j \nearrow t_\infty \), \((M, \Omega_{t_j})\) contains symplectic 2-sphere \(S \) with area \(\rightarrow 0 \):

\[
\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.
\]

Since

\[
\Omega_t = (1 - t)c_1 + t\Omega
\]

this implies

\[
c_1 \cdot [S] > 0.
\]

Adjunction:

\[
2 + [S] \cdot [S] > 0.
\]
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$
If bubbling occurs as $t_j \nearrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$
If bubbling occurs as $t_j \searrow t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$

But every such class in M represented by a holomorphic curve!
If bubbling occurs as $t_j \to t_\infty$, (M, Ω_{t_j}) contains symplectic 2-sphere S with area $\to 0$:

$$\Omega_{t_j} \cdot [S] > 0, \quad \Omega_{t_\infty} \cdot [S] = 0.$$

Since

$$\Omega_t = (1 - t)c_1 + t\Omega$$

this implies

$$c_1 \cdot [S] > 0.$$

Adjunction:

$$2 + [S] \cdot [S] > 0.$$

But

$$[S] \cdot [S] < 0.$$

So

$$[S] \cdot [S] = -1.$$

But every such class in M represented by a holomorphic curve! So $\Omega_{t_\infty} = \Omega_1$, and we have just bubbled off a (-1)-curve, as desired!
Theorem C. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense for some $t_j \uparrow 1$.