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This talk concerns three topics pioneered by Gene,

interacting in ways he might have found surprising.
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for some constant A € R.

Definition. An FEinstein manifold (M, g) is a
smooth compact manifold M equipped with an
Einstein metric g.

Eugenio Calabi’s most famous contributions to the
subject concern the case when (M, g) is also a Kahler
manifold.

His papers of 1954 essentially created the subject.
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(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

If we define the Ricci form by
P = T(‘]°7 )

then ip is curvature of canonical line bundle A™U.
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be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Definition. A Kdhler-FEinstein manifold (M, g, J)
is a compact complex manifold (M, .J) equipped
with an Einstein metric g that s also Kahler
with respect to J.

Still, in 1954, he considered more general problem
of constant-scalar-curvature Kahler metrics.

In 1982, he published a clear explanation of these
ideas, thereby introducing extremal Kahler metrics.
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Also suppose that g is not locally hyper-Kdahler.
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Main ingredients:

e Goldberg-Sachs Theorem; and

e Theorem of Andrzej Derdzinski.
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On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
%A% — A2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

g2

Wol? ==
W4 o
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The Bach Tensor

Conformally invariant Riemannian functional:

2
W(g) = / (W gdpyg.
M
I-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d .
G| == [ 4B, du,
t=0
where
1.
By = <vcvd T §TCd)Wacbd :

is the Bach tensor of ¢.

Conformally Einstein =— B =0
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Restriction of VW to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Now for an extremal Kahler metric

1
B = o {570“ + 2Hesso(5)}

and corresponds to harmonic primitive (1, 1)-form

1

{sp + 2@@@3} ;
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Restriction of VW to Kahler metrics.

Hence it h is extremal Kahler metric,

hy =h+tB

is a family of Kahler metrics, corresponding to

Wt = w + tY
and first variation is
d .
| = [ 5 Bay dy
t=0

- _/‘B|2 dfig

So the critical points of restriction of W to
{Kéhler metrics} also have B = 0!
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Bach-flat Kahler metrics?

If (M*, 7, h) Kahler, s~/ parallel. Hence
va(5_1W+)abcd = 0.

Conformally invariant, with appropriate weight!

Hence g = s~ 2h satisfies
va(WJr)abcd =0

where defined.
1
Bab — 2<vcvd + i%Cd)(WnL)acbd :
If h Bach-flat, ¢ = s~2h satisfies

0= %Cd(WJr)acbd

and so Einstein when s # 0.

Up to constant, only Einstein conformal factor.
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Here, Calabi’s extremal Kahler metrics related to
Einstein metrics in a way that Gene never expected!

Proposition (L '97). Let (M*,.J) be a complex
surface, and suppose that g is an Einstein met-
ric on M which is Hermitian with respect to .J.
Also suppose that g is not locally hyper-Kdahler.
Then g s globally conformal to a .J-compatible
extremal Kahler metric h.

Goldberg-Sachs: TV is isotropic and involutive,
— W must have a repeated eigenvalue.

Derdzinski: If W 2 0 and W has repeated eigen-
value, Einstein metric must be conformally Kahler.
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Theorem (CLW 08, 1. "12). Let (M, J) be a com-
pact complex surface. Then (M,.J) admits a
Hermaitian, Einstein metric <= by (M) is even,
and ci(M,.J) has a sign:

c1 >0, c1=0, or ¢ <.

The sign of c1 equals the sign of the FEinstein
constant X, and when c¢; # 0, the Hermitian,
Einstein metric s unique, up to isometry and
constant rescaling.

Most of this rests on the theory of K-E metrics. ..
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Theorem (L '12). Let (M*, J) be a compact com-
plex surface, and let g be an Einstein metric on
M which is Hermaitian with respect to J:

g(J+ J) = g.
Then either

o (M,.J,q) is Kdhler-Finstein; or

o ) ~ CP>,#CPs, and g is a constant times the
Page metric; or

o M =~ CPo#2CPy and g is a constant times
the Chen-LeBrun-Weber metric.
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Theorem (CLW 08, 1. "12). Let (M, J) be a com-
pact complex surface. Then (M,.J) admits a
Hermaitian, Einstein metric <= by (M) is even,
and ci(M,.J) has a sign:

c1 >0, c1=0, or ¢ <.

The sign of c1 equals the sign of the FEinstein
constant X, and when c¢; # 0, the Hermitian,
Einstein metric s unique, up to isometry and
constant rescaling.

What if we try to drop the Hermitian condition?
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The Calabi-Yau Case:

A result of Hitchin (1974) implies the following;:

Theorem (Hitchin et al.). Suppose the compact
complex surface (M4, J) admits a Ricci-flat Kdahler
metric. Then any other Einstein metric on M
is also Calabi-Yau (although usually adapted to
some other complex structure J'). Consequently,
the moduli space of Einstein metrics on M 1s
connected.
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The A > 0 Case:

Recall that

We AT — AT
Peng Wu observed that the Hermitian, Einstein
metrics with A > 0 all satisty

det(W+) > ()

everywhere, and then proposed that they should be
characterized by this condition.

Theorem (Wu '21/L '21). Let (M*, ¢) be an ori-
ented, simply-connected FEinstein manifold with
det(W.) > 0. Then (M, g) is a Hermitian, Ein-
stetn manifold with A > 0.

In particular, the A > 0 Einstein metrics we've dis-
cussed are isolated in the C? topology.
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instantons, another subject to which Gene made
seminal contributions.
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Definition. A gravitational instanton is a
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Riemannian 4-manifold.

Terminology due to Gibbons & Hawking, late "70s
Key example is called the Eguchi-Hanson metric.

But Gene discovered this example independently!
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Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:

Diffeotype:

Plumb together & copies of 7% S?
according to diagram.
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Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162

df) = xdV

Kahler with respect to three complex structures
Hence holonomy C Sp(1) = SU(2).

Hence Ricci-flat!

Calabi later called such metrics “hyper-Kahler.”

Gibbons and Hawking were unaware of all this!
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Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
When « = 0, they are ALE:

“Asymptotically locally Euclidean”

—4
gik = 01 + O(|z] )
In particular, volume of large ball is

?
T2
Vol(B,)~ L2

Notice that £ = 1 case is just flat R?!

The ¢ = 2 case is Eguchi-Hanson ~ T*52.
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Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:
Vol(B)) ~ const - p’

This last property distinguishes the ALE spaces
from other classes of gravitational instantons:

ALG, ALH, ALG* ALH* ...
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1
V=14+—
+2Q
Can also write as
7“‘|‘1 9 9 T 9
dr? 1
g=——dr + (14 7)|o] —‘;—02]—|—T+103

for left-invariant coframe {o;} on 5% =8U(2).

Taub-NUT becomes Hermitian metric on C2.
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Hawking: set ¢ = 4mf and 0 = 2m + g .
This makes ¢ into a Ricci-flat metric on R? x S2.
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Example. Riemannian Schwarzschild metric:

—1
1 2 2

et (1__m) d@u(l__m)dﬂ o
Y

2
Hawking: set t = 4m0 and ¢ = 2m + ¢ .
This makes ¢ into a Ricci-flat metric on R? x S2.
Makes h into extremal Kahler metric on C x CIPy.



C2
R? x §2

R x S°
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Definition. A gravitational instanton is a
complete, non-compact, non-flat, Ricci-flat
Riemannian 4-manifold.

Many excellent mathematical papers cleverly
narrow the definition for technical convenience,
by assuming at the outset that the metric is
hyper-Kahler.

But my collaborators Biquard and Gauduchon
have fortunately done us all the favor of re-
minding us that the hyper-Kahler gravitons
are only one small part of the story!
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Theorem A. Let (M, gg) be one of the ALF
toric Hermatian gravitational instantons featured
in Biquard-Gauduchon classification. Then any

other Ricci-flat Riemannian metric g on M which
15 sufficiently C’%—close to g is conformal to some

strictly extremal Kahler metric h, and so s, in

particular, Hermitian. Moreover, every such g

carries at least one Killing field.
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This is suggestive, but not quite definitive.
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Assuming this, our results then imply:

Theorem B. Let (M, gg) be any toric Hermi-
tian ALF gravitational instanton. Then any Ricci-
flat metric g on M which s suffictently C’% close
to g9 must be another one of the gravitational
instantons classified by Biquard-Gauduchon.
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