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ON COMPLETE QUATERNIONIC-KAHLER
MANIFOLDS

CLAUDE LEBRUN

1. Introduction. This article is concerned with the existence of complete Rie-
mannian metrics of special holonomy on E4,. We therefore begin by recalling the
basic notions and results concerning holonomy groups; cf. [5-1 1-6] [23].

Let (M, g) be a connected Riemannian m-manifold, and let x M be a chosen
basepoint. The holonomy group of (M, g, x) is the subgroup of End(TM) consisting
of those transformations induced by parallel transport around piecewise-smooth
loops based at x; the restricted holonomy group is similarly defined, using only loops
representing 1 e n (M, x). The latter is automatically a connected Lie group and
may be identified with a Lie subgroup of SO(m) by choosing an orthogonal frame
for TxM. Changing the basepoint and/or frame only changes this subgroup by
conjugation.

Excluding Riemannian products and symmetric spaces, very few subgroups of
SO(m) can be restricted holonomy groups, as was first pointed out by Berger [4].
In fact, the full list is as follows: SO(m), U(m/2), SU(m/2), Sp(m/4)x Sp(1)/Z2
(m > 8), G2(m 7) and Spin(7) (m 8). In all but the first two cases, the manifold
must be Einstein and must moreover be Ricci-flat except in the case of Sp(m/4) x
Sp(1)/Z2, for which the scalar curvature is never zero. A manifold of the latter
holonomy group therefore resembles a symmetric space to an uncomfortable de-
gree, and it behooves one to ask whether there are many or few complete manifolds
of this type. In the positive scalar curvature case, there are no known complete
nonsymmetric examples, and such are even known not to exist [21] in dimension
8; moreover, the moduli space of such metrics on a fixed manifold is a discrete space
[15]; cf. [25]. In this article it will be shown that, by contrast, the moduli space of
complete metrics on 4. with holonomy Sp(n) x Sp(1)/7/2 is infinite-dimensional.
(The scalar curvature of these Einstein metrics is, of course, negative.)
A Riemannian manifold (M, O) ofdimension 4n, n > 2, will be called quaternionic-

Kiihler if its holonomy is (up to conjugacy) a subgroup of Sp(n)Sp(1):= Sp(n) x
Sp(1)/7/2, but not a subgroup of Sp(n). Here Sp(n) := GL(n, ) SO(4n), where
denotes the quaternions, and Sp(n)Sp(1) is the subgroup of SO(4n) consisting of
transformations of 4, . of the form

v Aq-x

where A Sp(n) and q S3 c H. Such a manifold is never a Riemannian product
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and so has holonomy Sp(n)Sp(1) unless it is symmetric; in the latter case, the
holonomy is a proper subgroup ofSp(n)Sp(l) unless the manifold is locally isometric
to either Sp(n + 1)/Sp(n) x S(1) or its noncompact dual g Sp(n, 1)/
Sp(n) x Sp(1).

While we are not interested here in symmetric spaces in their own right, one can
nonetheless learn a great deal from an intelligent examination of H P.. Notice that
this is not a complex manifold; indeed, it does not even admit an almost-complex
structure! This may seem confusing insofar as the tangent space of H P. would seem
in some sense to be a quaternionic vector space. The answer to this riddle lies in
the fact that H has nontrivial automorphisms as a division ring, exactly correspond-
ing to the Sp(1) factor of Sp(n)Sp(1); if you like, there is a bundle of division rings,
locally modelled on H, over ]P,, and each tangent space is a vector space over the
corresponding noncommutative field.
One can untangle this complicated situation by passing to a 2-sphere bundle over

HP,, namely CP2,+ - HP,, where the projection is given by the Hopf map. Not
only is the pullback of THP, a complex vector bundle over CP.+, but CP2,+x is
itself a complex manifold! It was independently discovered by Salamon [24] and
B6rard-Bergery [3] that this situation has an analogue for any quaternionic-K/ihler
manifold.
To see this let (M4", g) be a quaternionic-Kihler manifold and let F M denote

the principal Sp(n)Sp(1)-bundle generated by parallel transport of an arbitrary
orthonormal frame. Then setting Z := F/(Sp(n)U(1)) yields a 2-sphere bundle
n: Z --, M, and each element y ofZ corresponds to an orthogonal complex structure

Jy: TxM TxM, Jr2 1, g(Jv, Jyw) g(v, w)

on M. Here, x n(y) and v, w TM. Let D c TZ denote the horizontal subspace
with respect to the Levi-Civita connection of g. Since n,: Dy TM is an isomor-
phism of real vector spaces, we can lift J to be an endomorphism (1): D --* D,
(1)2 1, so that D c TZ becomes a complex vector bundle, with 1 defined to
be scalar multiplication by -1. On the other hand the fibers of n are oriented
metric 2-spheres and so may be considered as Riemann surfaces; thus the vertical
tangent space V ker n, also carries an endomorphism 2: V Vwith (]2)z 1.
We may thus define an almost-complex structure o/on TZ D V by o ]1 0)

cz. Remarkably, this almost-complex structure is automatically integrable; i.e., Z
has C-valued charts such that o/becomes identically equal to the usual almost-
complex structure TC1"+1 TC2n+1 defined by scalar multiplication by x//- 1.
Moreover, the distribution D TZ becomes a holomorphic subbundle of the tan-
gent bundle, and the projection TZ TZ/D becomes a holomorphic line-bundle-
valued 1-form O e F(Z, I(L)), where L := TZ/D, which satisfies

o ^ (do)^" o.

Such a 1-form is called a complex contact structure and in particular gives an
isomorphism L (R)(,+1) K-l, where K fl2,+1 is the canonical line bundle. Finally,
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the map tr" Z Z, given by Jr -Jr and corresponding to the antipodal map on
each metric 2-sphere n-x (x), is an antiholomorphic involution (trz 1) without fixed
points.
Our definition of a quaternionic-Kihler manifold explicitly excluded the 4-

dimensional case n 1. Indeed, since SO(4) Sp(1)Sp(1), nothing interesting can
generally be said about Riemannian 4-manifolds with this holonomy group. But
one could instead ask under what conditions the almost-complex manifold Z
constructed above is a complex contact manifold. The answer, discovered by
Richard Ward [26], is that one should require that g be Einstein with nonzero scalar
curvature and that the conformal curvature W should be self-dual; i.e., W W,
where is the Hodge star operator, here acting on a bundle-valued 2-form. (This
development historically predated and motivated the work of Salamon and B6rard-
Bergery and in turn built on Penrose’s analysis [19] of the Ricci-flat case; cf. [1].)
We shall therefore define a quaternionic-Kihler 4-manifold to be a half-conformally
fiat Einstein 4-manifold with nonzero scalar curvature. (Here an orientable Rie-
mannian manifold is called half-conformally flat if there is an orientation with
respect to which the conformal curvature W satisfies I4’ W.)
The real power of the twistor space stems from the fact that the Salamon

correspondence is invertible [ 16-1 [ 18] [2]. Namely, given a complex contact manifold
(Z, tO) of dimension 2n + 1 together with an antiholomorphic involution tr" Z Z,
let M be the set of genus-0 compact complex curves C c Z which are invariant
under tr, have normal bundle isomorphic to [(9(1)-1.2" (where (9(1) is the divisor of
a point in CPx), and are transverse to the distribution D ker O. In general, of
course, this set is empty, but if it is not, it is a real-analytic 4-manifold. Moreover,
it naturally carries a pseudo-Riemannian metric of holonomy Sp(n l,/)Sp(1) for
some 0 < < n. Finally, if Z is the twistor space of a quaternionic-Kihler manifold
M’, then M’ is naturally isometric to one connected component M. Conversely, the
germ of the geometry at a point x M determines the germ of Z along the corre-
sponding curve C up to biholomorphism.

In this paper will exploit this invertibility to construct an infinite-dimensional
space of deformations of Hocg, Sp(n, 1)/Sp(n)x Sp(1) through complete qua-
ternionic-K/ihler metrics. We do this by first recognizing the twistor space Z of H o,ug,
as an open set of CZ2,+. We then deform an open neighborhood Z of the closure
of this set in such a way as to preserve both the complex contact structure and the
involution tr: Z by covering Z with three open sets U, U2, U3 such that
o’(U1)-- U2, o’(U3)-- U3 and U U2 ; we generate our deformations by re-
placing the identity map on U: U3 with an arbitrary complex contact transforma-
tion, while on U2 U3 replacing the identity with the same contact transformation
conjugated by tr. For small deformations of this type, we are then able to produce
a complete quaternionic-K/ihler manifold as one connected component of the
r-invariant rational curves transverse to the contact distribution.

Acknowledgements. I would like to thank Simon Salamon, Robin Graham, Jack
Lee, and Roger Penrose for some stimulating conversations, and both the Institute
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for Advanced Study and the Max-Planck-Institut for their hospitality and
support.

2. Preliminaries. We begin our work with a careful description of the twistor
correspondence for the noncompact symmetric space H3 Sp(n, 1)/Sp(n) Sp(1),
hereafter referred to as quaternionic hyperbolic space. If we define (right) quaternio-
nic projective n-space by HP/1 (H/1+1 (0})/,-, where

(q, q2, qn+) (ql q, q2q, qn+ q)

for all q {0}, we may notice that left multiplication by Sp(n, 1) := 0(4h, k)
GL(n + 1, H) acts transitively on the subset

IIq<)l 2 < IIq/xll 2

=1

with isotropy subgroup Sp(n) x Sp(1). We may therefore identify H with

k

HP,+ (I-q q/1+-I] IIq<ll < IIq+l12),
=1

whereas the latter may be realized as the open ball B
Ilqell 2 < 1} via the inclusion H/1 HP/1: (ql, q/l)-* [q, q/l, 1]. The metric is
uniquely determined by the requirement that it be Sp(n, 1) invariant since Sp(n) x
Sp(1) acts irreducibly on the tangent space of HP+ at [0, 0, 1], namely by the
canonical representation of Sp(n)Sp(1) on
The naturality of the twistor correspondence allows one to lift the isometry group

Sp(n, 1) of H3/1 to act on the twistor space Z by holomorphic maps; thus Z is just
Sp(n, 1)/Sp(n) x U(1) equipped with an invariant complex structure.
Now by identifying C2/1+2 with []q]/1+l via

(Z1, Z2, Z2n+l Z2n+2)(-’(Z1 -F" jz2, Z2n+ + jZzn+2),

we have an embedding

GL(n + 1, H) GL(2n + 2, C)

given by left multiplication; thus Sp(n, 1) now acts on CP2/1+. Moreover, it acts
transitively on

2/1

[2 2CP-n+x- {Ezx, z2,. z2n+x, Z2n+2]l Y Iz<l 2 < Iz2.+ + Iz2.+21 }

with isotropy subgroup Sp(n) x U(1).
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Moreover, if we identify the tangent space of CP,+I at I-0, 0, 1, 0] with
H" @ C C2"+1 via inhomogeneous coordinates

(Zl + jZ2, Z2n-1 + jz2,,, )-- [Zl, z2, z2,,+1, 1, ],

we notice that the isotropy representation is

(Sp(n) x U(1)) x (" O) C) - H" O) C

((A, 2), (b’, ())v-- (Ab’2-, 2-2().

But this action is complex linear with respect to only two complex structures,
namely the standard one on TCP2,+I and its complex conjugate, since the complex
span of a vector in ]n ) C now coincides with the fixed-point set of its isotropy in
Sp(n) x U(1), and a complex structure commuting with this action is necessarily in
the orthogonal group because Sp(n) x U(1) acts transitively on the unit spheres of
H and C.

It follows that the twistor space Z of Hn may be biholomorphically identified
with CP,+. Moreover, the twistor projection r: CP,+ HP+ just becomes

[Z1, Z2, Z2n+l Z2n+2- I- [-Z -1- jZ2,... Z2,,+ + Jz2n+2-[,

while the real structure

a:ZZ

just becomes right multiplication [’]-.[’j] by j; explicitly, it is the map a:
CP2,+1 CP2.+1 given by [z, z2, z2.+1, ZZn+2] I’-’ [---2, -1, --Z--2n+2, Z--2n+l]"

Notice that the structures discussed so far precisely coincide with the restrictions
of those of HP, to the open ball HP,+ c HP.. This amounts to the observation that
H, and HP. are paraconformally equivalent in the terminology of Bailey and
Eastwood [2].

It is the complex contact form of the twistor space that distinguishes between our
two distinct metrics which are related in this fashion. Again, by naturality, we seek
a contact structure on Z CP.+ which is invariant under the action of Sp(n, 1).
Such a form may be constructed as follows. Let o9 denote the complex symplectic
form

o9 dzx ^ dz2 + + dz2n_ A dz2n dz2n+l A dz2n+2

which may be rewritten as
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where (,) denotes the pseudo-Hermitian inner product

dz (R) d) (dz2n+l () d-2n+l -}- dz2n+2 ( d2n+2)

and so is invariant under the action of

Sp(n, 1) GL(n + 1, H) c U (2n, 2).

We then let (R) F(CP2+I, 1(2)) denote the line-bundle-valued 1-form given by

O(p,a()):= o(a, )

where p: C2n+2- {}--- CP2n+ is the canonical projection ff--[ff] and where
Tul,O c2n+2 is identified with C2"+2 in the obvious manner. This defines a line-
bundle-valued 1-form precisely because o(ff, if) always vanishes, and it takes its
values in the Chern-class-2 line bundle 9(2) because

p,’) p,tx)(2’)

for all 2 C {0}. The invariance of o implies that this 1-form is also invariant
under the action of Sp(n, 1). Since we have already noticed that the isotropy
representation acts on Hk x C by

(’, 0- (Ab’2-x,

there is only one invariant complex hyperplane in the tangent space of CP+z,+x, and
this must therefore coincide with the annihilator of the above 1-form (R). We
conclude that (R) is the complex contact form on Z associated with the symmetric
space metric on Ho,ug,.
To summarize, we have proved the following.

LEMMA. The twistor space of HJcF. It-liP.+ is given by

2n 2n+2

CP-n+l {[ZI’’’’’Z2n+2]I E [z<[ z< [z<12}
p=l e=2n+l

The real structure is given by

O’[ZI’ Z2n+l, Z2n+l, ZZn+2] [---2, -1, ---2n+2,

and the contact form is given by

(--I-’’=1 (z2’-ldZ2- z2<dz2<-l)l-(Z2n+ldZ2n+2-Z2n+2dz2n+l)"
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3. Deforming the twistor space.
B denote the 4n-ball

Let a E+ be any positive real number and let

ql
2 +,,. + q. 2 < (1 + a)II q+x 2

in Hz,; this is then an open neighborhood of the closure of Houg, c z,, which in
our model is given by the unit ball B c H" H P,. Let Z denote the inverse image
of B via the Hopf map:

2 {[Zl, Z2n+2 ] C02.+xl Izxl 2 + + Iz.I 2 < (1 + a)(Iz2.+xl 2 + 1z2.+212)}.

For any 1 > e > 6 > 0, this is covered by the three open sets

U 2 {Izz.+xl 2 < lzz.+zl2},

Oz , {[z2,+zl 2 < 1z2,+112},

and

and this cover of course satisfies U1 c U2 c U3 . Moreover, the real structure
becomes an antiholomorphic identification of Ux with U2, whereas it acts on U as
an antiholomorphic involution.
On an open neighborhood of U c U, let f be any holomorphic section of the

contact line bundle (9(2) K-/"+x); e.g., we may take

f(z, Z2n+l F[z zl

2n+2

3
Z2n Z2n+2

Z2n+2 Z2n+l

where F is an arbitrary holomorphic function on the ball 1112 + ...+ 12,12 <
(1 + 2a)(1 + 2e). We then associate to such an f the unique holomorphic vector
field Vy such that

(1) (R)(V) f and
(2) v(R) a: (R).

Here tO again represents the holomorphic contact form on CP2n+I given by

0--[t=l (z2-ldz2(-z2edz2-l)l-(Zn+ldzn+2-z2n+2dz2n+l)"
In fact, if we trivialize (9(2) over U1 r Ua by introducing the affine chart z,+2 1,
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the contact structure is represented by the 1-form

d22n+l + (z2/-ldZ2g z2,dz2g_l)
y=l

and Vs is given explicitly by the formula

+ +

+ f+
{=1

(f2(-1z2t-1 f2,z2()
OZ2n+l

For e sufficiently small, we can then define

,s:= exp(t Re Vy): U1 n U3 CP2n+I

this is automatically a biholomorphism preserving the contact structure. There is
also an analogous biholomorphism

,S" exp(t Re ): U2 ca U3 CP2.+a

where Vs is the holomorphic contact vector field induced by a,f; thus

Re Vy a, Re Vy

and

(tfa

Notice that our notation is defined such that r" U n U3 - CP2n+ is actually well
defined for all f in a neighborhood of the origin in the space of holomorphic
functions on any fixed open neighborhood of U ca U3 with respect to the uniform
topology. By shrinking this neighborhood we may assume that s(U1 ca U3)ca
)
f V2 ca V3

Given an f for which s is defined as above, we will now define a new complex
contact manifold. Roughly speaking, we wish to glue U to U3 via s, to U2 to

U3 via f. To make this precise let us start by defining

G (u, H H G)/~

where

U x y e U3 "x e U n U3, y f(x)
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and

This fails to be a complex manifold only because it need not be Hausdorff.
We remedy this by the following procedure. Let E denote the real hypersurface

IZ2n+X 12 (/ -" t)lZ2n+212/2 and let W" q/ CP2n+x denote exp (Re(Vy)), where q/is

some open set containing U1 U2. Let , F-I(E), which will be closed and
connected in/ provided that f is assumed to be small. Then , divides ,, into two
regions since it is an oriented, closed, connected hypersurface in an orientable
manifold; assuming that f is sufficiently small, one of these regions, which we will
call U, is contained in U. We similarly define U2, so that a(U1) U2. Finally, let
U3 denote the subset of Z given by

2
e+6 Iz2"+212 >1z2"+12 > 2 -Iz2"+212"

Then the image of a LI 2 LI 3 in ,’y is a topological manifold with boundary,
and its interior _Zy is the (Hausdorff) complex manifold which we will call the
"deformation ofZ associated with f", provided thatf is, of course, sufficiently small.
We now remark that Zy comes e_quipp_ed with a complex contact structure and

an antiholomorphic involution try: Zy -* Zy. The former is just obtained by restrict-
ing the contact structure from CP2,+1 to U, U2, and U3, and remembering that
our transition functions y and y preserve the annihilator distribution D
I-L c TCPEn+ of (R), so that these induced structures on U, U2, and U3 agree on
overlaps. The involution try is defined to be a" U U2 on U1, tr: U2 Ux on U_2,
and a" U3 U3 on U3; since troy ytr, this defines a consistent map on all of Zy.
In the next section, we will use these structures to create a quaternionic-Kfihler
manifold associated with

4. The associated 4n-manifolds. For each sufficiently small holomorphic section
f of the contact line bundle (9(2) K-/"+) on any fixed region q/= Ux c U3 in
CP2,+1, we have produced a complex manifold Zy. Moreover, if we consider the
family Zty, (-g, 1 + e’), we obtain a real-analytic family of complex manifolds
which displays Zy as a deformation of Z c CP2./. Moreover, each element of the
family comes equipped with a real structure trty: Zy ,y and a complex contact
structure

e r(2,:, -’/"+’)).

Now Z (P2n,...+12 is foliated by complex projective lines CPl which are invariant
under a: Z Z; moreover, the family of all complex projective lines forms a
complex manifold of dimension 4n. Because the normal bundle N of such a line is
given by [(9(1)] .2" CPl and so satisfies H(CP, N)=0, Kodaira’s stability
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theorem [12] implies that there is a complete 4n-dimensional complex family of
compact complex curves in Ztr for small. (Kodaira’s theorem is stated for complex
analytic families, but our real-analytic family can easily be extended to a holo-
morphic one by analytic continuation.) Moreover, the given curves are deforma-
tions of the complex projective line and so are themselves CP l’s. Finally, the normal
bundles of these curves are deformations of N [(9(1)] 2n; since Hx(CPx, N (R)
N*) 0, an open set (in the analytic Zariski topology) of these curves has normal
bundle N [(9(1)] .2.. Since N is generated by its sections, these curves fill out an
open set in each Zt.

Let //t denote the family of all compact genus zero curves C,, in Zt of normal

bundle N [(9(1)] .4.. On each ,,t, we have a real structure trtj.: ,t ,t’, and this
induces an antiholomorphic involution Pt: //lt //[, sending a rational curve
C = ,,tg to atg(C). Let rtj. denote the fixed-point set of Pt. By Kodaira’s theorem
[_12] (see also [7], [22]), ’t is a nonempty, complex 4n-manifold for small tzand
Mt is a real-analytic 4n-manifold which sits in /t as a real slice. Note that Mt is
nonempty for small because it is not empty when 0.
The union of the Mtr, , naturally forms a real-analytic (4n + 1)-manifold

Mn, and Ma comes eqmpped wth _a real-analytic submersion Maz E onto
some interval about 0. Since H, = Mo has a precompact neighborhood diffeo-
morphic to E4,, there is an open neighborhood aj. of H9. in /j. which is
diffeomorphic to E’" x I, where I is some open interval about 0 E in such a
manner that the projection E" x 1 I is just the function t.
We will henceforth refer to any rational curve C in a complex (2n + 1)-manifold

Z as a twistor line if it has normal bundle N [(9(1)] .2,. If Z is equipped with a
real structure tr: Z Z, we will call a tr-invariant twistor line a real twistor line.
For instance we have defined Mt in the above discussion as an open subset of the
real twistor lines in Ztj.. The twistor line corresponding to x //t will be denoted
by Cx c Zts.
We will now need a technical lemma.

PROPOSITION 1. Let (Z, (9) be a complex contact manifold of dimension 2n + 1,
and assume that the space of twistor lines in Z is nonempty. Then the set 5a of
twistor lines tanoent to the contact distribution D (F) +/- is a (possibly empty) non-
singular, closed complex hypersurface in

Proof. There is a double fibration

relating Z and ’. Here p: cg , is a CPx-bundle, while the map q: cg Z is a
holomorphic submersion onto an open subset of Z and is injective on every fiber
of p. (Indeed, cg {(x, y) /l @ ZIy Cx}.) Now the contact form (R) is a 1-form
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with values in some (n + 1)-st root g-x/(n+l) of the anticanonical bundle. But the
restriction of K-1 to any twistor line is isomorphic (by the adjunction formula) to

TI (R) A2"N (9(2)@ [(9(1)] (R)2" (9(2n + 2),

so that the restriction of K-1/t’+1) to any twistor line must be isomorphic to 60(2).
Let fp denote f/p*f, i.e., the vertical cotangent bundle ofp. Then the restriction
of q*(9 to the fibers of p is a section off (R) q*K-1/"+) over cal. But on each fiber
of p, fl (R) q,K-(,,+) (9; thus q:= o q,K-i/(,,+))p.(fp (R) is a holomorphic line
bundle, and q*(R) pushes down as a section

0 F(, if).

Notice that 6f is by definition the zero locus of .
To prove the proposition it therefore suffices to show that d 4:0 when 0.

To do this let Cx be a twistor line tangent to D O +/-; let No c N be the image of
D in the normal bundle

No’= DITCh.

Let u e F(Cx, N) be a holomorphic section of the normal bundle which vanishes at
some y e Q, but which has the property that u’(y) Nr (R) Tr* C is not in (No) (R) Tr* C;
this is possible because [(9(1)] 2" is very ample. Let f: Pl x f" Z be a family of
curves withf[P x {0}] C,,, such that [tOf/t3l 0] u, where / is a small disk
around 0 e C and the variable is used for elements of. (This is possible because
the family of twistor lines is complete in the sense of Kodaira; u just corresponds to
an element of the tangent space Tx/l.) Choose any local coordinate r/on P so
that the point y e Z corresponds to (, r/) (0, 0) and choose any local trivialization
near y of K-/("+), so that 0 is represented by a holomorphic 1-form 8. Then

c3
d f*,9 + -- f*,9,

But by construction u [f, c3/c3#] vanishes at y, whereas 0/0r/<,9, u> does not. Thus
the left-hand side, which represents the derivative of at our chosen point x of

0 in the direction of u e F(Cx, (9(N)) T’, is nonzero. Q.E.D.

COROLLARY. Let M denote the set of real twistor lines in a complex contact
(2n + 1)-manifold Z with antiholomorphic involution tr: Z- Z preservin9 the real
structure. Then the set S of real twistor lines tangent to the contact distribution
D tO +/- is a smooth closed hypersurface.
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Proof. S is a real slice of the previously analyzed set 6. Q.E.D.

We now notice that the above lemma is valid with auxiliary parameters since the
proofgoes through without change. Thus the subset S as c May of real lines tangent
to the contact distributions of the complex manifolds Zts is a smooth, closed
hypersurface transverse to the fibers of May [. Moreover, Soy is just the sphere
S4"-1 c3(Hcg,) c HP,. By replacing ray 4, x I with a smaller neighborhood
of Hoed, (say a ball in E4, times some smaller interval), we can therefore arrange that
each fiber of the projection 3r ay I meets Say in a diffeomorphic copy Sty of S’"-1.
Indeed, we only need to choose our neighborhood so that the ma_p Sas I is proper.
Now the generalized Jordan curve theorem guarantees that Mty is separated into

two components by Sty; moreover, the bounded component Mrs is easily seen to be
diffeomorphic to 4, by lifting the vector field d/dt on to as I in such a way
that its flow preserves Say.
To conclude we have associated to each "sufficiently small’ f a manifold My

diffeomorphic to E", defined as a certain set of real twistor lines in Zy. In the next
section we will show that Ms carries a natural complete quaternionic-K/ihler metric.

5. The deformed metric. We will now produce a complete quaterionic-K/ihler
metric on the manifold My defined in the last section. This metric is the output of
the following machine.

THEOREM 1. Let Z be a complex contact manifold with an antiholomorphic involu-
tion which preserves the contact structure. Let M be the space of real twistor lines in
Z and let M be a connected component of the subset of real twistor lines which are
transverse to the contact distribution. Assume that M M is precompact and that
the pseudo-Riemannian quaternionic-Kiihler metric 9 on M defined by the inverse
Salamon construction [ 16-] (see also [ 18], [3]) has Riemannian signature. Then (M, O)
is a complete quaternionic-Kthler manifold.

Proof. Let S be the boundary ofM in M. (By Proposi_tion 1, S = M is a smooth
hypersurface.) We need to show that the limit point in M of a Cauchy sequence in
(M, O) is never an element of S. For this it suffices to show that every sequence {xj}
in M that converges to a point x(R) of S has divergent distance from any given point
xoeM.

Let us now recall the construction of the pseudo-Riemannian quaternionic-
Kihler metric given in [ 16-]. Let //7 be the space of all (complex) twistor lines in Z
and let ’ denote the open subset consisting of these lines which are transverse to
the contact distribution D (R) +/- = TZ. We may define two vector bundles E
and H //7 as follows. Let x 7 correspond to the twistor line Cx = Z with
normal bundle Nx and let L Z denote the contact line bundle K-/"+). Suppose,
if necessary by restricting to a neighborhood of a twistor line, that L admits a
square-root L/2 K-/2(n+1). Then

H r(Cx, L1/2)
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and

ex r(cx, L-/ (R)

Since L-1/2 @ N is a trivial bundle on Cx - P1, we have

E (R) H r(c, N)

We now define a complex-Riemannian metric on ,a’ by defining symplectic forms
toe and o)n on the above bundles E, H ’ c and then setting g o) (R) o)n e
F(A2E* (R) A2H*) c F((S)2T*/). Namely, for x e /’, the normal bundle Nx is
canonically identified with the restriction Dlcx of the contact distribution to Cx, and
dO F(L (R) A2D*) F(A2(L 1/2 (R) D*)). We may therefore define

c%1 dO e A2F(C, L1/2 (R) N*) A2E*

On the other hand H F(Cx, L1/2) carries the Wronskian

W" A2F(C,, L1/2) F(Cx, "1c(R)L)

u ^ v-*u(R)dv-v(R)du.

But the restriction of the contact form 19 to Cx, where x e ’, automatically yields
an isomorphism

which sends (R)lCx to 1. We may then set

o)n := (R)- o W.

The resulting complex-Riemannian metric g:= c% (R) con then [16] has holonomy
cSp(n, C)(R) Sp(1, C)/Z2. Its restriction g to the real slice M c /therefore is a
pseudo-Riemannian metric with holonomy cSp(n l, l) x Sp(1)/Z2 for some in-
teger 0 < < n.

Let us now restate the above construction in a way more suited to boundary
considerations. First of all, we have a well-defined line-bundle-valued holomorphic
3-form

19 ^ dO e F(,, f3 (R) L2),

and we may exploit this by restriction to Cx, x e /.], to define

(St e F(/, ’ (R) A2E*)
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where, as in Proposition 1,

:= r(cx, n (R) L);

namely, we define

c%1 o ^ dO e r(c, n. (R) ANx* (R) L)

F(Cx, n (R) L)(R) AEF(Cx, Nx* (R) Lm).

Second, we define On e F(, (R) A2 H*) to be the Wronskian W

oSnl := W: A2 F(C, Lm) F(C, n, (R) L).

Finally, let us recall that, as in Proposition 1, the restriction of tO to each twistor-like
Cx yields a section e F(d/7, &a) with a simple zero along the set 6e c /7 of
twistor-likes tangent to D. If we now define

:= o5 (R) a5n e r(,//7, oz (R) A2E, (R) A2H,) c r(,A, ,2 (R) A2 T*,A),

we then observe that is related to the previously described complex Riemannian
metric on d// d/ by

It therefore follows that g times any function which vanishes along 6 to order two
extends holomorphically across ow and that the conformal class of fl thus extends
across 5 in a suitable sense. However, the rank of . actually drops at 5f; while (bn
is everywhere nondegenerate, o3e only has rank 2 at (its two nonzero directions
being given by (9 N* (R) L and TC,_ Id(R) f (R) (D/TC,)* (R) L), so that . has
rank 4 along 5e, as opposed to rank 4n everywhere else.
On the real slice M d//, we may trivialize the line bundle .W. Thus, for any

defining function z of S #,7, the quaternionic-Kiihler metric g has the property
that 2g extends real-analytically across S as a tensor field whose rank at S is 4.

Let us consider for a moment the image of in the cotangent space T*M along
S. Our isomorphism Td/a7 E (R) H reduces the structure group of 2r to GL(n, H) x
Sp(1)/7/2. Since the nondegenerate directions of fi are given by a subspace ofE tensor
all of H, we conclude that this rank-4 subspace is the "quaternionic span" of some
direction with respect to the Sp(1) factor. In fact it must be the quaternionic
span of the conormal bundle of $ M because & is nonzero in the direction of (9

along 5, and our proof of Proposition 1 that ) has nonzero derivative along 5e
showed the following exactly: that an element of F(Cx, Nx) F(Cx, N, (R) L-1/2) t)
F(Cx, L 1/2) of the form v (R) # is transverse to , whenever v e F(C, N,, (R) L-1/2)
E and/ e F(C, L1/2) H are such that v_ t9 s F(Q,, L1/2) and/ have their zeros
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at different places. In other words contraction with O gives a map Ex Hx when
x , and projection from Tx7 to the normal bundle of 6e c 7 is given by the
composition

E (R) H o (R)ia AHx (R) Hx A2Hx

It follows that strictly dominates some constant multiple of d02 near any point of
S c M. By compactness there is some constant k such that dominates kd2 on all
of = /7, since is positive-definite on M and therefore also dominates some
multiple of d2 near any point of the interior M = M. Thus 9 > kd2/2 on
all of M. The distance between two points x, x’ M therefore always exceeds
kllog (x)- log (x’)l. Since 0 at S, it follows that the 0-distance between a
given point Xo e M and a sequence of points xj in M converging to x S must
diverge, so that such a sequence xj is never Cauchy with respect to 9. Q.E.D.

COROLLARY. For f small, the twistor construction lives a complete quaternio-
nic-Khler metric on each of the manifolds Mf produced in the last section.

Proof. It suffices to check that the metric is positive-definite. But this pseudo-
Riemannian metric is obtained by deforming the symmetric-space metric on H
through pseudo-Riemannian metrics. But such a deformation leaves the signature
of the metric unchanged. Q.E.D.

It remains to show that our construction actually produces metrics on the various
manifolds My which are geometrically distinct. This will be our task in the next section.

6. The Kodaira-Spencer obstruction. In the previous section, we demonstrated
that each ofthe complex manifolds Z., wheref is any sufficiently small holomorphic
section of the contact line bundle L on a neighborhood q/of U1 c U3 CP2n+I,
gives rise to a complete quaternionic-Kihler manifold My. In this section we will
show that this implies that the moduli space of complete quaternionic-K/ihler
metrics on 4n is infinite dimensional. (In order to keep the discussion as simple as
possible, let us agree that the latter just means "not finite dimensional".)

Associated with any 1-parameter family Zt of complex manifolds is the Kodaira-
Spencer obstruction to the triviality of the family. (For a family of compact manifolds
to be locally trivial, it is necessary and sufficient for the obstruction to vanish [13];
in the noncompact case, it is merely necessary.) This obstruction is an element of
H (Zt, TZ) for each and may concretely be calculated in terms of Cech cohomo-
logy as follows. If Z can be constructed by first covering Zo with open sets U and
then replacing the identity map U c Ua Ua c U with a transition function a(t),
where tI) depends smoothly on and satisfies (0) id, (t) [tI)(t)]- and
a(t)Oar(t)Or(t) id, then the assignment of the vector field

d
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to the set U, c Ua gives a Cech 1-cocycle with values in (9(TZo). The class

[Ya] H-(Zo, (9(TZo))

is the Kodaira-Spencer obstruction for 0. Similarly, [a(t)] [Otj, d/dt O,t]
Hi(Z,, (9(TZ,)) is the Kodaira-Spencer obstruction for other values of t.
When Z, is a complex contact manifold, there is a refined version of this invariant.

Indeed, if our identification of regions U, of Zo with regions of Z, is done in such a
manner as to preserve the contact structure, then the vector fields Va will satisfy

and are therefore completely characterized by the sections f,a := (R)(Va) of the
contact line bundle L K-I/t"+a). Thus we get a contact version of the Kodaira-
Spencer obstruction defined by If,a] Ha(Z,, (9(L,)). Since the exact sequence

0 --, (9(D,) --, (9(TZ,) --, 6(L,) --, 0

canonically splits as a sequence of groups (although not as a sequence of (9-

modules!), our descent from H ((9(TZ)) to H ((9 (L)) does not lose any information.
We would now like to measure the nontriviality of our deformations Z,s by using

this contact Kodaira-Spencer obstruction. On the other hand, the cohomology
group H(, (9(L)) looks rather complicated (at least at first sight). We will get
around this problem by restricting the Kodaira-Spencer class to the fourth infi-
nitesimal neighborhoods [10] of twistor lines.

Let us set up the necessary infinitesimal-neighborhood machinery. If Cx c Z
CP2n+ is a projective line, let o c (9c P_./, denote the ideal ofholomorphic functions
vanishing on C. For each nonnegative integer m, let (9.,)(L) := (9(L)/[J+1 (9(L)].
There is then a natural restriction map

H(2, (9(L)) HI(Cx, (9o,,)(L))

for any value of m. Moreover, there are exact sequences

0 --, (9(L (R) N*) --, (9m)(L) --’ (9_x)(L) --, 0

of sheaves on Cx. Writing the normal bundle Nx as Ex (R) (9(1), where E - C2n is
again defined by F(C, N (R) (9(- 1)), this sequence becomes

O --, (9(2 m) (R) (3mE* -’ (9(m)(L) "- (9(m_x)(L) -- O.

Thus Hx(Q,, (9(m)(L))---0 if m < 3, whereas HI(Cx, (gt,)(L))= (S)’E*. The latter
isomorphism is, moreover, canonical, provided that Cx is transverse to the contact
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structure, so that (R)lc, provides a basis for

H(C, f(2))= [H(C, (9(-2))]*.

By construction, the contact Kodaira-Spencer obstruction of the family Zts at

Zo Z c CP,/ is given by the cocycle

fa3 f F(Ux U3, (_9(L)),

f23 a*f e F(U2 U3, (9(L)).

(This is a Cech cocycle for the cover { Ux, U2, U3 } precisely because U1 U3 and
U2 c U3 are the only nonempty overlaps; i.e., the cocycle condition f12 + f23 +
f3 0 on U U2 c U3 is vacuous.) Let us calculate the image of this cocycle in
H(C,, 94)(L)).
To do this, notice that the canonical isomorphism H(C,,(94)(L))=

HI(C,, 9(L) (R) (S)N*) - (S)E* is given by taking the fourth normal derivatives of
a Cech representative. The answer can therefore be calculated by a Penrose-type
contour integral [9] [20].
Namely, C, U is a Stein cover for C C. Choose a closed curve in
C c U c U3 and a closed curve 2 in C c U2 c U3 as in Figure 1.

U1

FIGURE 1

Then the isomorphism

(9(-2))

may be explicitly realized by

[(gl, g2)] -+/ gxO + g2O
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where gjk 6 F(Cn Un Uk, (9(--2)), since this expression vanishes when g13

hi -h3, g23 h2- h3 for some h 6 F(C n U, (9(-2)), but does not vanish for
all (3, g23)- (Again, we assume that Cx is transverse to the contact structure.)

Thus, if f is any function on a neighborhood of U1 n U3, the contact Kodaira-
Spencer obstruction of the family is detected by the contour integral

A.co(X) Oza,gzazCOz"

where A, D range over 1 2n. Here, f is considered as a function of
homogeneity 2 on C2"+2, and

(a*f)(zl, z2 Z2n+l, Z2n+2):’-- f(--22, 21, --22,+2,

If we assume that Cx is a real twistor line, we may take Y2 aYl and obtain

"eBCD(X) ni LOz.. z 0 +

where

(1, 2, 2n+1, 2n+2) (__22, 21, __22n+2, 22n+1).

Thus, if we choose

[ 13f(Zl,... Z2n+l F zl z2, Z2n+2
Z 2 Z2n+2J Z2n+l

for F(I, 2n) a holomorphic function in a ball of radius >(1 + e) and take ’1
to be Izxl 2 ( / 6)1z212/2, we obtain

VABCD(X I j=IZ IzJl 2

Lazy... + aoj

for x (ql, q,) (zl, Z2n) in the unit ball. In particular the space offunctions
F depending only on the even-numbered variables (z2, z4 z2"), defined on a ball
of radius >(1 + e) in C", and vanishing to order 3 at the origin, injects into
HX(2, (9 (L)).
We will now see that the geometry of the associated quaternionic-Kihler mani-

folds Mf is correspondingly altered. To do this let us ask whether the third
infinitesimal neighborhood of a twistor line in Z can be isomorphic to the third
infinitesimal neighborhood of a "nearby" twistor line in . Such an infinitesimal
neighborhood defines an element of H (CP l, Aut((93))), where (93) is the structure
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sheaf of the third infinitesimal neighborhood of CPa c CP2n+I. One can show I-8]
that this torsor is given by

Ha(CPa, Aut((9(3))) HI(CPl, (TCP2,+ll cp,) (R) ()3N*),

as follows from the fact that there are central extensions

Der((9(), r/jr+l)>_} Aut((9(,.)) --- Aut((.,_l)

essentially by a nonlinear version of the long-exact sequence associated with a
short-exact sequence. (Here the automorphism of (gtm) associated with a derivation
v Der((90), 3em/3e’+a) - (9(TCP2,+a (R) 6)’N*),m > 1, isjust 1 + v.)On the other
hand, if our line CPa c CP2,+a is transverse to the standard contact distribution,
we have an injective linear map

(dO)-1" ()4N* () (9(2) ()3N* ( D

obtained by identifying the normal bundle N with D and remembering that dO:
D D* (R) (9(2) is an isomorphism. This results in an injection H (CPa, (9t4)(2))
Ha(CPa, Aut((gt3))), 4E* E (R) ()3E*, which is none other than the restriction
of the splitting Ha(Z, (9(2)) Ha(Z, (9(TZ)) to an infinitesimal neighborhood of
CP 1. The upshot is that our deformations Zty effectively deform the third infinitesimal
neighborhoods of twistor lines as F ranges over the given space of holomorphic
functions. But since the local geometry of Mtl near x determines the biholomor-
phism type of the germ of Cx c ZI, it follows that the deformations My are all
distinct as F ranges over the holomorphic functions in a ball in C" which vanish
to order 3 at 0; i.e., we have given an infinite-dimensional family of effective defor-
mation of the quaternionic-KS.hler manifold Hgf through quaternionic-K/ihler
manifolds. Since the isometry group of Ht is, of course, finite dimensional, we
have proved the following theorem.

MAIN THEOREM. The moduli space of complete quaternionic-Kahler metrics on
n is infinite dimensional.

Remark. Our proof shows that kABCD measures a (paraconformally invariant)
change in the geometry. In fact, ignoring the factor of (1 2:lzJ12), which may be
viewed as corresponding to a paraconformal weight, W actually corresponds to the
t-derivative of the piece of the curvature tensor which lives in

((4E*) (R) (A2H*)2 c (A2T*M)Q)(A2T*M).

7. Concluding remarks. While we have focused on the higher-dimensional case
and the associated holonomy problem, our theorem shows that the space of com-
plete self-dual Einstein metrics on E4 is infinite dimensional. In fact the proof gives
more--namely, there is an infinite-dimensional space of conformal metrics on S3
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which bound complete self-dual Einstein metrics on the 4-ball, in the sense that the
conformal structure is smooth up to the boundary, making it into a conformal
infinity. Let us point out the relationship between this and earlier results.

First off, the present author [14] proved some time ago that any real-analytic
conformal metric on a 3-manifold is locally the conformal infinity of a unique
self-dual Einstein 4-manifold. Pedersen I-7] then produced an explicit 1-parameter
family of (left-invariant) conformal metrics on S3 which bound complete metrics on
the 4-ball.
By contrast, Graham and Lee [11-1 have recently proved (by the inverse function

theorem) that any conformal metric on Sm-1 sufficiently close to the standard one
is the conformal infinity of a complete Einstein metric on the ball. It is therefore
natural to ask which conformal metrics on S3 bound a complete self-dual Einstein
metric.
An analogous problem arises when one examines the Dirichlet problem on the

2-dimensional disk. Any smooth complex-valued function on the circle is the
boundary value of a harmonic function on the disk, but only a subclass of functions,
those of "positive frequency", are the boundary values of holomorphic functions,
whereas a complementary set of ("negative frequency") functions are boundary
values of antiholomorphic functions.

Let us define a conformal metric [hi on S3 to be of positive frequency if it is the
conformal infinity of a complete self-dual Einstein metric on the 4-ball; similarly,
define it to be of negativefrequency if it is the conformal infinity of an anti-self-dual
Einstein metric. The following then seems most natural.

Positive Frequency Conjecture. Any conformal metric I-hi on S3 which is suffi-
ciently near the standard conformal metric ho can be expressed in the form

h 02qg*(ho + h+ + h_)

where qg: S3- S3 is a diffeomorphism, is a nonzero function, h+ and h_ are
trace-free symmetric tensor fields, and ho + h/ is of positive frequency, while ho +
h_ is of negative frequency.

Such a result would then seem to provide a natural polarization for quantum
gravity, at least on the level of scattering theory.
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