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Scalar-flat Kédhler surfaces of all genera
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and Massimiliano Pontecorvo at Rome

Abstract. Let (M,J) be a compact complex 2-manifold which admits a Kéihler
metric for which the integral of the scalar curvature is non-negative. Also suppose that
M does not admit a Ricci-flat Kahler metric. Then if M is blown up at sufficiently many
points, the resulting complex surface (M, J) admits Kéhler metrics with scalar curvature
identically equal to zero. This proves Conjecture 1 of [16].

1. Introduction

The problem of determining which compact complex manifolds (M, J) admit Kéhler
metrics g with constant scalar curvature was first formulated and studied by Calabi [5]
in the late 1950’s. Posed in this generality, Calabi’s question is one to which the answer
still eludes us; but there are two unrelated fronts on which notable progress has been made.

The most dramatic progress has been made in relation to the case in which one also
requires that the Kahler class be a multiple of the manifold’s first Chern class — that is,
in relation to the question of which compact complex manifolds admit Kahler-Einstein
metrics. This may be reformulated as an existence problem for solutions of the complex
Monge-Ampére equation, and, working from this point of view, Aubin [2], Yau [30], and
others [28], [25], [19], [27] have given us a fairly complete solution of the problem.

Progress, albeit of a more modest kind, has also been made regarding the case in
which the scalar curvature of g is required to equal zero and dim¢ M = 2; solutions
(M, J, g) of this problem are the scalar-flat Kéhler surfaces of the title. The essential reason
why this case is more tractable than others is that the underlying oriented Riemannian
manifold (M, g) of any scalar-flat Kéhler surface is automatically [8] anti-self-dual, allow-
ing one to invoke the Penrose twistor correspondence [20], [1] and giving rise to pheno-
mena familiar from the theory of totally integrable systems. In particular, all scalar-flat

1) Supported in part by Korean Ministry of Education grant BSRI-96-1434.
%) Supported in part by NSF grant DMS 92-04093.



70 Kim, LeBrun and Pontecorvo, Kéhler surfaces

Kibhler surfaces with semi-free Killing fields can be written down explicitly [13], [14], and
deforming these [16] leads to a reasonably complete picture when the fundamental group
is large.

A fundamental limitation of this approach is that any simply-connected scalar-flat
Kaihler surface with a semi-free Killing field automatically must have large n,, and solutions
with small fundamental group are thus a priori inaccessible by this method. The present
article, however, will finally prove the existence of (non-Ricci-flat) scalar-flat Kéhler surfaces
with 7, =0 and Z@® Z. Our key trick is a Kummer-type construction which allows us to
produce new solutions by smoothing the orbifold singularities of Z,-quotients of old
solutions. Successfully carrying this out involves melding two previous extensions [11],
[17] of the Donaldson-Friedman method [6] of constructing anti-self-dual metrics on
connected sums. After comparing the solutions obtained in this way with the biholomor-
phism types allowed by surface classification [29], we deduce the following:

Theorem A. Let (M,J) be a compact complex 2-manifold which admits a Kdhler
metric for which the integral of the scalar curvature is non-negative. Then precisely one of
the following holds:

» (M,J) admits a Ricci-flat Kihler metric; or

« any blow-up of (M,J) has blow-ups (M, J) which admit scalar-flat Kéhler metrics.
This proves Conjecture 1 of [16].

A corollary of this is the following:

Theorem B. Let (M,J) be a compact complex 2-manifold which admits a Kdhler
metric for whicll the integral of the scalar curvature is positive. Then any blow-up of (M, J)
has blow-ups (M, J) which admit Kihler metrics of constant positive scalar curvature.

One might note the formal similarity between Theorem A and a recent result of
Taubes [26] which asserts that one can find anti-self-dual metrics on the connected sum
of any smooth oriented 4-manifold M with enough copies of CP,. However, Taubes’ proof
is direct, whereas ours falls back on classification theory. One would hope that different
proof of Theorem A, proceeding along Taubes’ lines, might shed more light on Calabi’s
general problem.

2. The Quotient Theorem

In this section, we state the central technical result of this article, and then set up
the framework in which it will be proved. This result, from which our main results will
be deduced, is the following:

Theorem 1 (Quotient Theorem). Let (N, Jy,gy) be a non-minimal compact complex
surface with scalar-flat Kihler metric, and let & : N — N, ®2 = 1, be a holomorphic isometry
with only isolated fixed points. Let (M, J,;) be obtained from N | ® by replacing each singular
point with a CP; of self-intersection —2. Then there exist scalar-flat Kihler metrics g,, on
(M, Jy).
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Here a compact complex surface N is called non-minimal if it is obtained from another
surface by blowing up; this is equivalent to saying that N contains a CPP, of self-inter-
section —1. Our description of M amounts to saying that if N is blown up at the fixed
points of @, the resulting complex surface N is a branched double cover of M, with the
newly-introduced exceptional divisors as ramification locus. More abstractly, M is the
minimal resolution of the ordinary double-point singularities of the variety N/&.

We will prove this theorem by using the theory of twistor spaces [1], [20]. For our
purposes, a twistor space means a compact complex 3-manifold Z equipped with a free
anti-holomorphic involution ¢:Z — Z and a foliation by o-invariant rational curves
CP, c Z with normal bundle 0 (1) @ O(1). Let X denote the leaf space of this foliation by
the so-called real twistor lines, and let p : Z — X denote the quotient map. There is then
a canonical conformal class [g] of anti-self-dual metrics g on X, characterized by the
requirement that the image of every holomorphic tangent space T,!*°Z should be a g-
isotropic subspace of C ® T X. Conversely, every anti-self-dual manifold arises in this way,
and does so in an essentially unique manner.

If a twistor space Z contains a compact complex surface D which is disjoint from
its conjugate D:=0 (D) and has homological intersection number 1 with a twistor line,
then g|,: D — X is a diffecomorphism, and [g] pulls back from X to yield a conformal
class of Hermitian metrics on D. Because D is compact, the anti-self-duality of [g] implies
[4], [21] that this conformal class is locally represented on D by scalar-flat Kéhler metrics.
If, moreover, b,(D) is even, there is a globally-defined scalar-flat Kéhler metric g e [g],
and this global representative is uniquely determined once its total volume is specified;
conversely, every scalar-flat Kahler surface arises from this construction, and does so in
an essentially unique manner. Thus, in order to prove Theorem 1, it suffices to produce
a twistor space Z containing a copy of the complex surface (M, J,,) which is disjoint from
its conjugate and intersects some twistor line transversely in one point. We will do just
this by refining the methods of [17], where anti-self-dual metrics were constructed on the
underlying smooth manifold M.

To begin this construction, let Z, denote the twistor space of (N,gy), and let
L,,..., L, be the twistor lines of the fixed points of ®. Let Z be the blow-up of Z along
these lines, and let Q,,...,Q, be the exceptional divisors in Zy corresponding to
Ly,...,L,; thus ;= CP, xCP,, j=1,...,k, and each of these 2-quadrics has normal
bundle O (1, —1) - CP, x CP,. Since the derivative of @ at its k isolated fixed points must
be —1, the induced biholomorphism &: Zy — Z, fixes each Q; and acts on its normal
bundle by —1. The quotient Z_:=Z,/® can thus be given the structure of a compact
complex manifold in a unique way that the quotient map Zy = Z_ becomes a branched
covering, with Q= J Q; as ramification locus. Let Q;_ denote the image of this Q;in Z_,
which is an imbedded quadric with normal bundle (2, —2), and let Q_ = U Q.

The twistor space Zy contains a hypersurface Dy corresponding to the complex
structure Jy, as well as a disjoint hypersurface Dy:= o (Dy) corresponding to the conjugate
complex structure —Jy; indeed, Dy and Dy are respectively isomorphic to (N, +Jy) as
complex surfaces. As the action of & sends each such surface to itself, there are disjoint
hypersurfaces D_ and D_ in Z_ obtained by first taking the proper transforms in Zy of
Dy and Dy, and then projecting these hypersurfaces to Z_. Notice that D_ is exactly a
copy of (M, J,,), whereas D_ is a copy of (M, —J,). Set
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tio=D_nQ;_, {;_=D_nQ,_, { = U £-, and £_:= U £i_ .

Our next step is to let Z, consist of k disjoint copies of the complex 2-fold Z,
obtained from the orbifold twistor space of the conformally compactified Eguchi-Hanson
metric by blowing up the twistor line of infinity. To describe Z;, explicitly [10], [17],
start with the CP5-bundle n: # —» CP; defined by

B=POQ*®0),

where our conventions are that P(E):=(E — 0)/C™. Let ©(1,0):=n* (0 (1), and let © (0, — 1)
be the universal bundle, whose principal C*-bundle is [(0(2)®3@® 0) — 0] - #. The
“homogeneous coordinates” of 0(2)®3@ O are canonical sections x,y,ze '0(2,1) and
tel0(0,1). Let ae I'(CP,, ®(2)) be a non-trivial section which is invariant under the
anti-holomorphic involution J of ¢ (2) = TCP, induced by the antipodal map of S? = CP;;
and let the 2 distinct zeroes of a be called the north and south poles. Our blown up twistor
space is then obtained from the hypersurface

xy=2z%—1t2q?

in # by replacing the two singular points x = y = z = 0 with CP,’s. The quadric ¢ = 0 cor-
responds to the blow-up of the orbifold twistor line “‘at infinity,” whereas the real structure
is given by

[x:y:2:1] = [S():3(x):3(@):1].

If we let Dy = Z;y, denote the Hirzebruch surface over the south pole and let Dy, denote
the Hirzebruch surface over the north pole, then we may define D, = Z, and D, = Z, to
consist of k disjoint copies of Dyy and Dy, respectively. Let us use Q;, to denote the
appropriate copy of the ¢ = 0 quadric in Z;, and Q, to denote U Q;+- Set

ti+=0;:+n Dy, Z;+=Qj+nD_+’ {+=U4'+’ and Z+=UZ;+~

Now let Zy=Z_u, Z, be obtained from the disjoint union Z_11Z, by biholo-
morphically identifiying Q;_ < Z_ with Q;, < Z, in such a way that the real structures
agree and such that /_ is identified with ¢, . (This actually specifies the gluing procedure
uniquely, modulo real automorphisms of Z,.) Set Dy =D_uD, and Dy=D_uD,. The
result is that Z,, D, and D, are complex spaces with normal crossing singularities, and
there is an induced real structure ¢ : Z, - Z, which interchanges D, and D,. By a slight
abusg of notation, we will denote the image of Q;, in Z, by Q) whereas the images of
Gi1s €y, £y, €1, and Q. will respectively be denoted by 4 Z}, ¢, £, and Q.

Our method of proving Theorem 1 will now be as follows: we will construct twistor
spaces Z, containing hypersurfaces D, = (M, J,,) by simultaneously smoothing the singularities
of Zyand Dy < Z,,.

Because the twistor spaces Z, must admit real structures, we will of course also need
to smooth the singularities of D,, too, and it is natural to also include this stipulation
from the outset. In §3, Theorem 1 will now be proved constructing relative smoothings
of precisely this type.
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3. Proof of the Quotient Theorem

Continuing the discussion of §2, let D, D, = Z, denote the disjoint union of D, and
Dy =a(D,), and let f: Dy D, < Z, be the tautological holomorphic imbedding. In this
section we shall prove Theorem 1 by studying the deformation theory of the pair (Z,, D, D).
Our approach makes use of the deformation theory of Ran [22], [23].

Let us first warm up by discussing deformations of the singular surface D,, noting
all along that such a discussion will, by conjugation, automatically also implicitly completely
describe the deformation theory of Dy, and hence that of the disjoint union Dy D, = Dy D,,
too. Now since D, =D_u,D, is obtained from D_uLiD, by identifying (—2)-curves
¢;_ < D_ with (42)-curves £;, = D, D, is a singular complex surface with normal crossing
singularities along £ =~ /_ = ¢, and satisfies the so-called d-semistable condition — the two
normal bundles v,, ,, of the singular hypersurface are dual to each other.

Because D, has k connected components, each of which is isomorphic to the second
Hirzebruch surface P (0 @ 0(2)), and as each connected component of /. corresponds to
the zero section of 0 (2) =« P(0 @ 0(2)),

4k, j=0,
hj(@D+.(+) = k’ -]= 1 ’
0, Jjz2,

and the restriction map

HO(@D.,.,Q) I HO(@/+)

is surjective; here @y y denotes the sheaf of holomorphic vector fields on Y which represent
0 in the normal bundle v, y of the complex submanifold X < Y. Using this, we now prove

Lemma 1. Let tJ, denote the sheaf of derivations of Op,. Then

H(©,)®C*, j=0,
Hi@)={ H' (®,),  j=1,
0, jz2.
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Proof. Consider the normalization exact sequence

0 - 19, = 946p_ip,c.ne. = 1,6, >0,

where q: D_w1D, — D, is the quotient map and 1:£ — D, is the inclusion. Since the
restriction map H®(®), ,,) » H°(O,) is surjective, the associated long exact sequence
tells us that H°(1))=H®(®,_, )®C* and that H'(1))=H'(®,_, ) ® C* Since
H*(@p, ,,) =0, we also read off that H*(z3 ) = H*(0,_,.).

However, the latter cohomology group vanishes. Indeed, D_ is a ruled surface, and

the generic CP, fiber of D_ is disjoint from Z_; indeed, N is ruled because [29] it is non-
minimal and admits a scalar-flat Kadhler metric, N is obtained from N by blowing up, and

~

N is a branched cover of D_=>~ M, ~yvith branch locus Z_ the union of the exceptional
divisors introduced by the blow-up N — N. Moreover, ©,,_,_ is a locally free sheaf, and
Serre duality therefore says that H%(D_,0,_, )= [H°(D_.,Hom(®,_, ,Q?)]*. The
restriction of Hom(@,_, ,Q3 ) to a generic CP, fiber of D_ is thus isomorphic to
0(—2)® 0(—4), and any global section of this sheaf therefore vanishes. Hence
H*(13)=H*(D_,0,_,)=0.

Since £_ < D_ is a union of k disjoint (—2)-curves, the long exact sequence induced
by

060, , -6, »v,_, -0
now tells us that H°(0, )~ H°(6,_ ), and that
HY (@, )=H'(©),_ ,)®C*=H'(1)). O

The deformation theory of D, is therefore unobstructed:

Proposition 1. The complex space D, admits a versal deformation

2 "> U H\(D_,0, )®C,
with fibers D,s=w (1, 1,),t,e H'(D_,0,_, ), t, € C*, satisfying
1. D, is smooth iff t, e (C*)¥;
2. D,=D_=Mwhent,=0 and t,e (C*)*; and
3. all small deformations of D_ = M occur as smooth fibers D, of w.

~ Proof. The deformation theory [7], [6] of D, is governed by the vector spaces
T3, = Ext/(2} , Op, ). These may be computed by means of the Ext spectral sequence [9]

ES1=HP(D,,7}) =T,

where 1§ = Ext?(Q', 0). Because D, is a locally complete intersection, 1, =0forg=2,
and the spectral sequence therefore degenerates into the exact sequences
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a1 . . L X
H’ (t,,o) — H’(rgo) - Ty, — H’ l(t,l,o) - H’“(‘tgo).
Meanwhile, the d-semi-stable condition tells us that t,‘,o =0, so

) Ck, j=0,
Hi(tp) = {O _]]'=f=0

The lemma now tells us that 7;; = 0, and that there is an exact sequence
0> H'(D_,0,)->Tp - Ct>0.

Since T3 = 0, the deformation theory [7] of D, is unobstructed, and there is a versal
family 2 over a neighborhood of 0 € Tp, . This family has the property that any 1-dimen-
sional subfamily of this family smooths the normal crossing at Z;if the image of its derivative
in H°(t;) = H°(¢, 0) = C* is non-zero on ¢;. Moreover, any effectively parametrized family
with central fiber D, is a pull-back of 2.

Let us now consider the explicit smoothing .# of D, gotten by blowing up M x C*
along the smooth submanifold (¢, X {a; =0})u - U (4, X {a, = 0}). Since £, = M has self-
intersection —2, the central fiber of .# — C* is obtained from D_= M by attaching a
Hirzebruch surface P(0(—2)@® 0) to M at each ¢;; in other words, the central fiber is
isomorphic to D,. Since . is an effectively parametrized family with central fiber D, it
must be contained in @ by versality, and because the fiber of .# over any 1, € (C*)* is
smooth, the image of C* in Tj}, is transverse to the kernel of Tp, — H°(t}) = C*. We may
now choose new coordinates on T, identifying it with H'(D_, @p_) x C* in such a way
that the above explicit family corresponds to the C* subspace, and so that the
H'(D_, ®,_) subspace corresponds to the original kernel of the projection.

If M - A is any deformation of M over a neighborhood of 0 e C, pull it back by
the self-map z — z? of C to obtain a new family with vanishing Kodaira-Spencer map at
0. Let M be the blow-up of the total space of this family along the submanifold /_ of the
central fiber. Then M is a smoothing of D,, and so, by versality, must therefore be a
pull-back of 2. Hence every small deformation of M occurs as a smooth fiber D,. O

Remark. At the tangent space level, the above proof incidentally shows that the
exact sequence

0 — H'(1)) - Ty, » H (tp,) = 0
has a geometrically preferred splitting. This will later prove useful. ©

Having discussed the deformation theory of D, D, the next step is obviously to dis-
cuss that of Z,; but this, in fact, has already been studied in [17]. As before, the vector
spaces T, = Ext!(Q},, 0,,) that control the deformation theory fit into an exact sequence

0 —» HY(Zy,13) > T — H*(Q,0) » H*(Zo,13,) » T7, » H'(Q,0)

I |
c* 0
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and the cohomology of 13 = #om(2} ,0,,) can in turn be computed via the long exact
sequence

HI™YQ,00) » HI(Zy,13) » H(Z_,0,_o)® H(Z,,0,, ) - H'(Q,0,).

Using the explicit form of Z,, one then may check that H*(Z,, 0;..0) =0. On the other
hand, Z_ has a branched cover which is a blow-up of the twistor space Z,, and this implies
that H*(Z_, 0,_,) = [H*(Zy, ©;_ )]s, Where the subscript indicates the + 1-eigenspace
of the automorphism induced by @. One may thus conclude that 72 =0, and that the
smoothing theory of Z, is therefore unobstructed, once one knows the following result,
which was stated in [16]:

Theorem 2. Suppose that N is a non-minimal compact complex surface with scalar-
flat Kihler metric gy. Then its twistor space satisfies

H*(Zy,0)=H*(Zy,0 ® k™ '*) = H*(Zy, 0, »5) =0,
where D and D are the tautological divisors associated with Jy and —Jy.

Unfortunately, while the proof given in [16] suffices for all cases needed for our
applications, it overlooks the case of surfaces with non-semi-free C*-actions, and we have
therefore chosen to include a completed proof in the present article. As this proof is rather
long, however, and involves ideas quite unrelated to the thrust of the present discussion,
it has been relegated to an appendix (§ 5).

Finally, we turn to the deformation theory of the pair (Z,, D, D,), which is governed
by the derived functors 77 of Ran [22], [23], in the sense that T, } corresponds to infinitesimal
deformations of the imbedding f and obstructions lie in 772 These vector spaces may be
computed by means of the long exact sequence

(3.1) 0 —— TP — Ty 5, ® Ty, — Ext%(Q}, Op,5,)

)
— T} —— Ty 5, ® T}, —— ExtH(Q} , Op,5,)

__,Tf2 ——"TDZOEO@TZZO_“’
Here T} 5,:= Ext/(Q},, Op,) ® Ext/(2},, 05,) and T} = Ext/(Q} , 0, ) are the usual glo-
bal Ext groups, whereas Ext/(Qz , 0, 5,) are the derived functors of

Homf (Qéo’ @Doﬁo) = Homﬂpobo(f* Qéo’ @Dolso) = H0m020 (Qéo’ f* (QDol—)o)

in either variable.

The local form of the singularities of the pair (Z,, D, D,) is just the same as in [11],
§3; namely, around the singular locus we can take coordinates (w,, ..., w,) € C* so that
Z, is given by {w, w, = 0} and D, (or D,) is the hypersurface {w, = 0}. This implies [11]
that Lif*Q; =0, ¢>0, and hence Ext}(Q},0p, 5.) = Ext"(2} |p. 5, Up,5,)- Hence
there is a spectral sequence
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pq — KP (0l _ + 1
E2 =H (é"x[ (Qlolboﬁo’ @DODO)) = EXt; q(QZO’ @0050)

where the local &xt sheaves can be computed [11], 3.10, to be

0 -
tZo|DoDo’ r= 0 k]
r 1 _ _ 1
Ext"(Rz,1po 50> Upobo) = § Thopy = COpzr r=1,
0, r2.

We now claim that the relative deformation theory under consideration is unob-
structed as a consequence of Theorem 2. As in [11], §4, we start by considering the exact
sequence

0o _ 0 _ 0 0 ~
0 = 72,0050 = Do ® T2o = Tz4lp00, = 0-

Lemma 2. Suppose that N satisfies the hypothesis of the Quotient Theorem. Then
HZ(T(Z)o,Dul_)o) = Hz(rgolbol-)o) = 0'

Proof. Since we have already observed that H?(t3 5,) @ H?(t3,) = 0, it is enough
to show that H’(<3, , 5,) for j=2,3. To this end, consider the normalization exact se-
quence

0 _ — -
0 — 12, po00 0z,.0.5.0. 9 Oz.p.p5.g. = Og.cz 0,

where /=Q_nD_=Q_nD, and /=Q_nD_=QnD,. Because Oy ,; = 0 D 0(0,2),
H/(0, ;) = 0 for j >0, and so

Hj(rgo,Dol—)o) = Hj(@Z+,D+ D+ Q) @ Hj(@z-.D-ﬁ-Q-)’ .] = 2’ 3 .

But rational curves of normal bundle O (1)@ (1) sweep out an open subset of Z,, so
Serre duality tells us that H?(0g, p,p,0.)=0. It thus only remains to show that

HZ(@Zg,th)* Qt) =0.
We start by considering Z_, which, by construction, fits into a diagram

V4

Z_ Zy

in which B blows a disjoint union Q of quadrics down into the union L, of ®-invariant
twistor lines in Zy, and in which a is a 2-fold branched covering map with branch locus
Q. Let & be the line-bundle square-root of the divisor Q = Zy associated with this branched
cover. Then

: @_, _ﬁ_Q_@(@z_,p-ﬁ_Q-®$_l)9 j=0,
(32) a;@h_bnﬁnf{o,z > e

6 Journal fiir Mathematik. Band 486
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whereas

j @N ~NDn,Lo? j=0,
¢ HOn s = o (10

In combination with the short exact sequence
0 = Oz, pybne = Ozy.Dyby = Viezw = 0
and the observation that v, _ , = 0(1)@® O(1) on each CP, component, (3.3) tells us that
HZ(ZN’ @ZN,TJNENQ) = HZ(ZN’ @ZN,DNﬁN,Lo) = HZ(ZN9 @zN,DNf)N) =0.
But the Leray spectral sequence of (3.2) says us that
[H*(Zy, Os.inbno)lo = H*(Z_,0;,_p. B-g.)>
so that H*(Z_,0;_p, 5 o) =0, as claimed.

To finish the proof we have to show H*(Z,,0,, ,, 5.0,) =0. But [17], Lemma 2
says that H%(Z,, ©;,.0.) = 0. We now invoke the exact sequence

0- @Z+.D+§+Q+ - @Z+,Q+ I vD+5+,Z+ -0.

But because vp, 5, 7, is trivial, it follows that H'(vp, 5,.z,) = H (D, D,,0)=0, since
each component of D, D, is a simply-connected surface. This implies that

HZ(Z+’ @Z+,D+§+Q+) = HZ(Z+, @z+.q+) =0,

as desired. O
Just as in [11], we therefore have a commutative diagram

0 0 0

l l !

H'(t3, po5,) — H'(1D,5,) ® H'(z3,) — H'(1%,|p,5,) —— 0

l l l

T} 2, T 5, ® T, — s Exth, 5 (s O) — T - 0
| | l

c* —— H%(tpy5,) ® H(13)) — H°(tz,po5,) —— 0

| l !

0 0 0

with exact rows and columns, where the middle row is (3.1). In particular, T,2 =0, so there
exists a versal deformation
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such that the fibers of w, and w, are smooth over elements of T} which project to
(C*)* = C*. Furthermore, by the same argument as [6], §6.1, there is a real structure
é¢: % — Z which interchanges 2 and & and which restricts to the central fiber as the given
real structure ¢ on Z,. This induces a complex conjugation on 7;! compatible with the
standard one on C*, and the fibers Z, over points ¢ of the real slice which project to
(R*)* = R* are twistor spaces [6], [17]. Moreover, these twistor spaces contain degree 1
divisors D, which are disjoint from their images D, under the real structure; and since
b,(D,) = b, (M) is even, it therefore follows [3], [21] that any such Z, is the twistor space
of a scalar-flat Kahler metric on D,.

To prove the Quotient Theorem, it thus suffices to show that there are suitable real
values of ¢ € T, for which D, is biholomorphic to M. In order to show that this is possible,
we will use the following:

Lemma 3. With the previous hypotheses, the natural map H' (<3, p 5.) = H'(t3 5,)
is surjective.

Proof. The normalization sequence of the preceding lemma tells us that the natural
map

H' (12, po5,) = H'(0z_p_ 5.0 )® H' (02, p,5.0)
is a surjection. On the other hand, the analogous exact sequence
0 - 19, = 44O b+, = 10, > 0
tells us that the natural map
H'(tp,) » H'(@p_,)® H'(6p_..)

is an isomorphism; treating D, similarly then tells us that

H'(3,5) =H"(Op_, )OH (05_;)®H' (O, )DH (O5,2).
It therefore suffices to show that the natural maps

H'(82,.0.5.0.) > H'(Op,,..) ® H' (65, 2,)
are surjective. But as these maps occur in the long exact sequences induced by
06,0, ®5,5 = Oz.p.5.0. > €p..0. 65,2, > 0,

we need merely show that H%(0;, o, ® $,5,) =0.

Now for Z,, one has a short exact sequence
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0->7®I, 5. > 02,005,500,
where ¥"denotes the vertical, Q-relative tangent sheaf [17], 3.2. Since 720 =0, ¢ =1,2,
it follows that H/(Z,,0) = H'(CP,, 00), and thus H*(0;, ,® %, 5,) = H*(¥'® %, 5,)-
On the other hand [17], n} (¥ ® 4, 5,) vanishes on the complement of two points of

CP,, so that H'(n}(¥ ® %, 5,)) =0, whereas n2(¥" ® 5, 5,) vanishes outright. The
claim therefore follows from the Leray spectral sequence of n: Z, — CP,.

As for Z_, an argument analogous to that of Lemma 2 shows that
Hz(@z_.q_ ®Ip_5.) = [HZ(@iN,Q ® Ipybn)lo -

Indeed, for the branched covering map « and blowing down map B, one can check in a
similar way as we have done before that

(@z_,Q_ ® fp_ D_)@ [(@Z_,Q_ ® jp_ 5-) ® g—l], j= 0,

ai(@Z;,Q ®jD:i_’N) = {0, ]4: 0,

while

@ZN,L¢ ®'ﬁDNi)7v’ .] = O ’
0, j%+0.

Bi(Bsz.0 ® I5nhy) = {
Hence H*(03, o ® 6, 5,) = H*(O,, 1, ® S, 5,)- But now the long exact sequence of
02 02,0 ®Ipyby = Ozy ® Ipyby = Viozw @ Iy — 0
and the fact that v, , ® 4 5, = O0(—1)@ O(—1) combine to imply that
H*(0,,1,® I, 5y) = H* (02, ® I, 5,) »
so that H2(0,_, ® Jp_5_) = [H?*(O3z,.9 ® I, 5,)]e as claimed. Since
H? (@zN ® JDNISN) =0
by Theorem 2, the result follows. 0O
Now, according to Proposition 1, D, has a versal family of deformations over a
neighborhood of 0e H'(D_, 3 ) x C* with the property that the fiber over (0,7,), £, € (C*)*,
is biholomorphic to M; moreover, the Kodaira-Spencer map of this family at 0 is compatible
with the natural exact sequence
0 - H'(t3) » Tp, » H(zp,) = 0,
for which it therefore provides a splitting. By versality, the family w,, is therefore induced

by a map
T}>U - H' (1)) ®H (1p,) ®C*® C*
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whose derivative at 0 amounts to the natural restriction homomorphism 7' - Tj} 5 and
which intertwines the real structure of T;' with the anti-linear map on the target which
interchanges the obvious pairs of factors. The derivative of the induced map
U->H'(zx})®H I(t,,“o) is therefore surjective at 0 by Lemma 3; and if we restrict this
map to the real slice and then project to the first factor, the resulting map

RTHNU - H'(z])

therefore also has surjective derivative at 0. The inverse image of 0 is thus a k-dimensional
real submanifold ¥ of RT}, and the image of V in

Tpo5,=H'(13)®H (13) ® C*@® CF

is a neighborhood of 0 in a diagonally imbedded R* = C* @ C¥. Since the generic element
of V therefore projects to an element of (C*), it follows that the restriction of w, to V
is a simultaneous real smoothing of (Z,, D,) for which the generic hypersurface D, is a
copy of M. Thus M admits scalar-flat Kahler metrics, and we have proved Theorem 1. 0O

Remark. The above argument actually proves a bit more; any small deformation
of M also admits scalar-flat Kidhler metrics. This ostensibly stronger statement, however,
is actually an immediate formal consequence of the mere statement of Theorem 1 in light
of the deformation theory of scalar-flat Kahler surfaces [16] together with Theorem 2. O

4. The main theorems

As a first step toward proving our main results, we now apply the results of the last
section to scalar-flat Kihler metrics on some specific surfaces.

Proposition 2. If CP, x CP, is blown up at 13 suitably chosen points, the resulting
complex surface admits scalar-flat Kihler metrics.

Proof. The strategy is to apply Theorem 1 when N is a two-fold blow-up of
CP, x Z, where X is a compact complex curve of genus 2. We therefore begin by con-
structing such a scalar-flat Kihler metric on this manifold which admits a suitable involu-
tion @. This will be done by careful use of the hyperbolic ansatz construction of [13].

Let X be of genus 2, and let ¢ : £ — Z be the WeierstraB involution which realizes
T as a 2-sheeted branched cover n: Z — CP,; let § € £ be one of the 6 fixed points of ¢,
and set g = m(4). Let h; be the curvature -1 Hermitian metric on Z, and notice that ¢ is
an isometry of h;.

-{} N N -
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We now equip the 3-manifold X:=ZX x (—1,1) with the hyperbolic metric

ks + dr?
A=) (a-1)?’

h

1
where ¢ is the standard coordinate on (—1,1). Let p, = (q, + §>EX, let G, be the

hyperbolic Green’s functions of p, € X, and set V' =1+ G, + G_. We then let P be the
principal S!-bundle on X — {p,} with connection 1-form 6 such that

*dV =d0o

and such that the restriction of (P, 0) to the hypersurface ¢ = 0 is the trivial bundle-with-
connection X x S!. We then endow P with the Riemannian metric

g=10—-t)[Vh+V~167].

The metric space completion of (P, g) is then a smooth compact Riemannian 4-manifold
(N, gy) of scalar-curvature zero, and admits a complex structure J, with respect to which
gn is Kéhler. Moreover [13], the complex surface (N, Jy) is biholomorphic to CP, x
blown up at two points in the fiber over ge Z.

Consider the map y:Zx(—1,1) » Zx(—1,1) given by (, 1) (¢(), —1). As
w*V' ="V and p is an orientation-reversing isometry of X, it follows that p*P > P as a
principal bundle-with-connection, where P denotes P equipped with the inverse S !-action.
There is therefore a unique isometry @ of P which covers y and restricts to the hyper-
surfacet=0aspxc: Zx S' » T x §' where c: S! — S is the reflection e** — ¢~ *. This
extends to the Riemannian completion N as an involution of the desired type. Indeed, it
is not hard to see that & is induced by the involution r x ¢ of CP, x X, where r is 180°
rotation of CP, = S? about an axis, which interchanges the two blown-up points, which
are antipodal on the equator of an invariant S2.

X
X

CP,

b 4
X

9

==
D)

One may now apply Theorem 1, but it remains for us to understand the structure
of the resulting (M, J,,). In order to do this, first blow up N at the 12 fixed points of @,
and notice that we have the following arrangement of curves in the blow-up N
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-6
- N
: - | s
-1 _1//"1
-6
}
- z
4

Now N is a 2-fold branched cover of M, with ramification locus equal to the twelve (—1)-
curves introduced by blowing up the fixed points. Descending to M will thus double the
self-intersection of these branch curves, while halving the self-intersection of any curve on
which @ acts non-trivially. The corresponding picture of M is therefore as follows:

cP,

Contracting 13 judiciously chosen exceptional curves, we get CP; x CP; as our minimal

Q

cP,

model. Invoking Theorem 1, we thus conclude that the above iterated blow-up.of
CP, x CPP, admits scalar-flat Kéhler metrics. Moreover, it also follows from our smoothing
argument that any sufficiently small deformation of M also admits scalar-flat Kdhler
metrics. O

cp,

cP,
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Corollary 1. If CP, is blown up at 14 suitably chosen points, the resulting complex
surface admits scalar-flat Kdhler metrics.

Proof. The blow-up of CP, at two distinct points is biholomorphic to the blow-up
of CP, x CP, at one point. Now use Proposition 2. 0O

Proposition 3. Let E~ T? be any elliptic curve. If Ex CP, is blown up at 6 suitably
chosen points, the resulting complex surface admits scalar-flat Kahler metrics.

Proof. Our strategy is similar to that used in the genus 0 case, but we will now
have to exercise great care in order to compensate for the non-trivial Jacobi variety of E.

We begin by choosing 4 distinct points ¢, q,,r,,7, € E such that g, +q,=r, +r,
as divisors, and a holomorphic line bundle L — E which is a square-root of the divisor
q,+q, =r;+r,. (For example, if E is C/A, where lattice 4 is generated by 1 and 7, we
may take q,, q,, r,, r, to respectively be the equivalence classes of 0, (1 + 7)/2, 1/2, and
7/2, whereas L may be taken to be the divisor of the point represented by (1 + 7)/4.) Thus
L®? comes equipped with holomorphic sections u, and u, whose zero sets are respectively
{41,9,} and {r,, r,}, and all these zeroes are simple. We now let £ be the 2-fold branched
cover of E with branch locus {q,,¢,} associated to the bundle L; explicitly,

Z={ eL|{®(=umny ()}

_ where 7; : L — E is the canonical projection. Let ¢ : £ — X be the involution with 2 fixed
points induced by multiplication by —1 in L, and let n: X — E denote the canonical
projection induced by n;. Let 7' ({¢,,9,}) = {4,,4,}, and let

" {ry, ) = {Fiu by By B}

Notice that n*L is the divisor line bundle of 4, + ¢,, whereas its square n*L®? is the
divisor of £, + F, + F3 + #,.

As before, we equip the 3-manifold X:= 2 x (—1,1) with the hyperbolic metric

hy dr?

= T am o

but this time we set p; = (f,,0), j=1, ..., 4. Let G; be the hyperbolic Green’s functions of
4
pieX,andset V=14 ) G;.On (2 x{0})—{p;} = Z — {#;}, let P, be the flat S* bundle

j=1
with Z, monodromy corresponding to the branched cover with branch-points #,, ..., 7,
associated with the line bundle n*L. Then [13] there exists a principal S!-bundle

P — X — {p;} with connection 1-form 6 such that
*xdV =d0

and such that the restriction of (P, 6) to the hypersurface ¢ = 0 is the flat bundle P,. Indeed,
the Chern-Weil theorem guarantees that we can find a connection with curvature *dV
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1
because d * dV'=0o0n X — {p;} and [ﬂ * dV] € H*(X — {p,}, Z). Because V is symmetric

in ¢, a connection with curvature x4V is automatically flat on (Z x {0}) — {p,}, and its

1 1
- 1 4 - .
etV _ a4 dV _ i

holonomy around p; is automatically e'}*?" = =¢ "= —1,where Disa

disk in ¢ 2 0 that bounds a loop around p; in X x {0}, S is the sphere made up of D and
its reflection in ¢, and B is the ball about p; € X with boundary S. Twisting by the pull-back
of a flat connection on X now allows us to modify the restriction of (P, ) to £ x {0} so
as to obtain any given flat connection with holonomy —1 round the points p;; and F, fits
the bill.

As before, we now endow P with the Riemannian metric
g=0—=t)[Vh+V~10?].

The metric space completion of (P, g) is then a smooth compact Riemannian 4-manifold
(N, gy) of scalar-curvature zero, and admits a complex structure Jy with respect to which
gy is Kihler. There is a smooth holomorphic curve £ = N which is a copy of the two-fold
cover of Z with branch points 7, ..., #, associated with 7* L, obtained by taking closure
of the Z, bundle from which P, was constructed. This allows one to observe [13] that
(N, Jy) is obtained from P(n*L @ ) —» X by blowing up the points #,, ..., #, on the zero
section of n*L < P(n* L@ 0); the key point is that £ = N corresponds to the proper
transform of the curve {®2 = u,, where u; € I'(Z, O (n* L®?)) is the standard section with
simple zeroes at 7, ..., 7,.

Consider the involution i: n*L — n*L which maps (n*L), to (n*L),E,, by multi-
plication by —1in L, = L, This involution extends P (z*L @ 0), and so lifts to an
involution @ : N — N with exactly 4 fixed points, corresponding to 0 and oo in the fibers
over 4, and §,. Since n* L is the divisor line bundle of 4, + ¢,, there is a section u of n* L
with simple zeroes at §, and 4,, and by averaging we may arrange that 1 (u(z)) = —u(¢ ()
for all z e X; the proper transform C, = N of the image of u is then ®-invariant.

Now the involution @ just corresponds to the unique connection-preserving involu-
tion of P which covers ¢ x1:[X x(—1,1)] » [Zx(—1,1)] and extends : £ - £. 1t there-
fore preserves gy, and we may apply Theorem 1. The remaining task is thus to analyze
the structure of the surface (M, Jy,).

Since N is obtained from N by blowing up the 4 fixed points of &, it contains the
following arrangements of curves:

A
LT

|

‘A %
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The corresponding picture of M is therefore:

AP )
L)

9 q2

Contracting 6 exceptional curves in the right order, we get Ex C[P, as our minimal
model. Theorem 1 thus tells us that the above iterated blow-up of E x CP; admits scalar-flat
Kahler metrics, as do its sufficiently small deformations. 0O

Remark. Notice that the scalar-flat Kéhler surface we have just constructed admits
a holomorphic C*-action; namely, the C*-action on CP, X E induced by the ‘“earth-
rotation” of CP, lifts to M, which is obtained from CP, x E by iteratively blowing up
fixed points of the action. Also notice, however, that the induced action is not semi-free,
since the isotropy of any generic point on either of the second-level blow-up curves
{+1} = C*. A theorem of Lichnerowicz [18] now implies that S! = C* acts isometrically
on this scalar-flat Kdhler surface. By combining elements of the proofs of Propositions 2
and 3, one can similarly construct scalar-flat Kihler metrics with non-semi-free S!-action
on 14-point blow-ups of CP, x CP,.

One might, in principle, use the Toda lattice equation [12] to construct the above
metrics explicitly. However, Theorem 2 of [14] insists that these solutions definitely cannot
arise from the hyperbolic ansatz case of that construction. This is consistent with the fact
that the orbits with exceptional isotropy give rise to very peculiar orbifold singularities of
the associated 3-dimensional Einstein-Weyl geometry.

Any of these metrics is a counter-example to the assertion [16], Proposition 3.1, that
a blown-up ruled surface of genus <2 cannot admit both a C*-action and a Kahler class
of total scalar curvature 0. While the argument offered there does indeed work if one
insists that the C*-action be semi-free, the recipe given for a section of the anti-canonical
bundle simply breaks down if, as in the present case, an isolated fixed point is blown up
at some stage in the iterated blow-up process. 0O
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Theorem 3. Let (M,J) be a ruled surface — i.e. suppose that M is a compact com-
plex 2-manifold for which there exists a holomorphic map M — X with generic fiber CP,
and range a Riemann surface X. Then (M, J) has blow-ups (M, J) which admit scalar-flat
Kdhler metrics.

Proof. Any ruled surface M is bimeromorphic [3] to some product surface X x CP,.
If M, is any blow-up of 2 x CP, it then follows that there is a blow-up M, of M, which

is also a blow-up of M:
M,
M M,

But [11], Theorem 4.6, and Theorem 2 tell us that any 1-point blow-up of a non-minimal
scalar-flat Kéhler surface also admits scalar-flat Kéhler metrics; induction then says the
same is also true of iterated blow-ups. It therefore suffices to find just one blow-up M, of
each 2 x CP, which admits a scalar-flat Kdhler metric. If the genus of X is at least 2, the
hyperbolic ansatz [13] then explicitly constructs such metrics on a 2-point blow-up M, of
2 x CP,. For genera 0 and 1, on the other hand, the necessary surfaces M, are constructed
in Propositions 2 and 3. O

Theorem A. Let (M,J) be a compact complex 2-manifold which admits a Kdhler
metric for which the integral of the scalar curvature is non-negative. Then precisely one of
the following holds:

« (M, J) admits a Ricci-flat Kihler metric; or

- any blow-up of (M, J) has blow-ups (M, J) which admit scalar-flat Kihler metrics.
Moreover, any blow-up of such an (M, J) admits scalar-flat Kdhler metrics, too.

Proof. By a vanishing theorem of Yau [29], any compact Kéhler surface of non-
negative total scalar curvature is either ruled or has cf = 0. In the latter case, Yau’s solution
of the Calabi conjecture [30] guarantees the existence of a Ricci-flat metric on M. If, on
the other hand, M is ruled, so is any blow-up M of M; and Theorem 3 tells us that some
blow-up M of M therefore admits a scalar-flat Kéhler metric. Finally, any blow-up of a
non-minimal scalar-flat Kihler surface also admits scalar:ﬂat Kihler metrics, by [11],
Theorem 4.6, and Theorem 2, and this may be applied to M to prove the last clause. O

Theorem B. Let (M,J) be a compact complex 2-manifold which admits a Kdhler
metric for which the integral of the scalar curvature is positive. Then any blow-up of (M, J)
has blow-ups (M,J) which admit Kéhler metrics of constant positive scalar curvature.
Moreover, any blow-up of such an (M, J) also admits such metrics.

Proof. The hypothesis says that c, - [w] >0 for some Kihler class [w], so that
c® 4+ 0 and M certainly cannot admit a Ricci-flat Kéhler metric. On the other hand, a
straightforward inverse-function-theorem argument [15] shows that if a compact complex
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manifold without holomorphic vector fields admits a non-Ricci-flat scalar-flat Kéhler
metric, it also admits Kéhler metrics of constant positive scalar curvature. The result
therefore follows from Theorem A. O

5. Appendix: The Vanishing Theorem

In this appendix, we demonstrate that Kodaira-Spencer theory is unobstructed for
the twistor spaces of all non-minimal scalar-flat K&hler surfaces. The proof is a direct
extension of that presented in [16], but allows for the possibility of non-semi-free C*-
actions.

Theorem 2. Suppose that N is a non-minimal compact complex surface with scalar-
at Kdhler metric gy. Then its twistor space satisfies
&N y4

H*(Zy,0)=H*(Zy, @ ® k™ '"*) = H*(Zy,0;,p5) =0,
where D and D are the tautological divisors associated with Jy and — Jy.
Proof. The natural homomorphisms

HZ(ZN’@®K—1/2) e HZ(ZN’@Z,DI'))9
HZ(ZN’@Z,DE) - HZ(ZN’@)

are surjective because H2(N, @y) = H?(N, 0 (x5 !')) = 0 for any ruled surface N. On the
other hand, careful inspection of the Penrose transform shows [16], Theorem 2.7, that
H*(Zy,® ® k™ '/2) is canonically identified with the kernel of

(5.4) dF |oy: HO(N, Oy) — A%,

where # is the Futaki invariant, [w] is the Kéhler class, and 4 « H'!(N)= H?(N) is
the hyperplane

{ae H"}(N)|c,va=0}.
Our goal here will thus be to show that (5.4) is injective.

Because [18] the automorphism group of N has a compact real form given by the
isometry group of gy, H°(N, @y) is spanned by vector fields = which generate C* actions
which are free on an open dense, and such that the S!-action generated by ¢ = 3Z is iso-
metric with respect to gy, while RE is globally a gradient vector field because the con-
traction of = with any holomorphic 1-form vanishes identically. In fact, H°(N, @) is at
most 1-dimensional; for if Z, and E, are two such fields, we must have E, A5, =0
because [16], [29] the existence of a scalar-flat Kihler metric forces H°(N, k1) = 0. This
implies that the generic orbit of =, has closure F~ CP, which is also the closure of a
generic orbit of Z,. If £, does not have the same zeroes on this CP, as £,, the isometry
group contains an SU (2) which acts transitively on this 2-sphere, and the orbits of this
SU(2) are all either holomorphically embedded CPP,’s or points; but the latter type of
orbit is impossible, because an S = CP, orbit near a fixed point would be contained in
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the domain of a holomorphic chart, contradicting the fact that every holomorphic function
on CP, is constant. Thus every orbit of this SU(2) would be a CIP,, and we would conclude
that N would be a minimal ruled surface - contradicting our hypotheses. Thus =, and =,
must have the same zeroes on the generic orbit-curve F, and hence, since both generate
generically free C*-actions, Z, = + Z,. This shows that A°(N, &) £ 1, as claimed.

As there is nothing to show if H°(N, ©y) = 0, we may therefore assume henceforth
that H°(N, ©y) = C and is spanned by a holomorphic vector field £ whose imaginary part
¢ is a periodic Killing field, with generic minimal period 2#. By averaging, we can represent
any other Kahler class by a metric g which is S*-invariant. With respect to such a metric
g, whose Kiéhler form we shall call w, let t be the Hamiltonian function of ¢, conventionally
normalized so as to have range of the form [—a,q], and let X be the stable quotient
N//C*. If t=a and/or t = —a are isolated fixed points, blow them up to obtain a new
complex surface N; otherwise, set N = N. We then have a map I1: N —» X x [ —a, 4] with
S!-orbits as fibers. If p,, ..., p,, are the images in X x (—a, a) of the isolated fixed points,
and if X =[Zx(—a, a)]—{p;}, then on the open dense set ¥ =I1"'(X) < N we may
express the given Kéihler metric g in the form

g=wg(t)+wdt® + w 10%2,

for some positive functions w > 0 on X and a family of orbifold metrics ¢(¢) on Z. Here
6 is the unique 1-form on Y whose kernel is orthogonal to & and such that §(¢) = 1. The
orbifold points in X of the g(¢) exactly correspond those S!-orbits in M which are non-
trivial, but which have period 2x/n for some n. Since these also coincide with points at
which the C*-action has exceptional isotropy, the orbifold points of X exactly consist of
vertical line segments in X x (—a, a) which join two of the p;. If we let jrange over the set
of exceptional curves contained in fibers of N — X, each such curve is the closure of a
C*-orbit, and so we may define integers m, 2 1 as the order of the associated isotropy
group, and real numbers ¢~ < t,*, defined to be the minimum and maximum values, re-
spectively, of the Hamiltonian ¢ on the associated exceptional rational curve E;. Also
define

- +
my={™ b <1<,
! 1, otherwise.

Finally, let ¢; be the ¢ coordinate of p;.

Because g, w and dt are geometrically defined, ¢ (¢) is an invariantly defined, +-depen-
dent orbifold Kihler metric on X for all r¢ {r}; and when re{t;}, it is and defined
everywhere aside from a fine number of punctures. Let & () be the Kihler form of £(¢).
If C~ and C* denote the “repulsive” and “attractive” curves t= ta in N, we then
have [16]

G)It=ta= O’
d
— =2 -
dtd)":_a wlc
d
-—-@ =-"2 + 9
%l .. wlc
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while the density of scalar curvature may be written globally on Y < M as

2

sd,u=|:—2é+ d%—z-d)]/\dt/\().

Here the Ricci form §(z) of £(¢) satisfies

N 1
E £Q(t) = X(Z)_ Z (1 - mJ(t)>

J

for t ¢ {¢;} by the Gauss-Bonnet Theorem for orbifolds [24]. Thus
_[ tsdp = [ tsdu
N Y

d2
=t [ 2¢ +d26):|/\dt/\0
Y
2 a

jtha’)dt jz[

—-a

ar’ fo]a
(4] - 24
—4r ja Zn[x(}:) - Z (1 - m,l(t)):l tdt

a tr
=2nj|:t%d)—d)] —8n2Y — [ tdt
3 -a J hi

1
m,

=21ra[ 20— | Zw] 47t22 [(l‘+)2
c- c*

J 1>) E, 1<)

| C~ ct 131

;7)1

=| fo- o £w+2n2[(a—t,+)-—(t,"——(—a))]Ejm
=—_[a)—— j’wﬂ £w+2[2m,jw—2m,gw]i’;w

-[fo- Jo]tor £ m-m|fo] fo.

Here F is any smooth fiber of N — Z, and the partial ordering < on { j} means that, with
respect to the flow of REZ, the first exceptional curve precedes the second in some singular

fiber of N — Z.

On the other hand, the total scalar curvature of such a metric g is
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[sdu= [sdu
N Y
2

d
![—2@+ch]/\dt/\9

2 a
i5(ﬁdt—41t [}

a

_ d a a 1
= 2n£ [Et-d):l_a —4n _ja 2n[x(2’) - ;(1 - m,(t))] dt

27:[ 20+ | Zw] —16n%ay(Z) + SnZZ(] - —1—> (¢ =1)
c- c- ) m,

fodt
z

=—4n[f o+ 5w+2(1—-g)Iw+Z(1‘”’"’)5w:|’
Cc+ F E

c- ]

where g denotes the genus of £. When the above vanishes, we then have
- 1 1
FE [w])=—z [t(s—sp)d" = — = [ 1sdp
2y 2y

g gl ol

Cc- FHES E,
(Here s, = [ sdu/ [ du denotes the average value of the scalar curvature.) If the C*-action

generated by Z is semi-free, all the E, terms drop out, and the formula simplifies to yield
that of [16], Theorem 3.2.

Let #:=%(Z,") and let ¥ = _4tn1 fsdu= —c, - [w], thought of as functions on the
Kihler cone = H!(N, R). Letting Q = [w] denote the Kéhler class, we therefore have
(5.5) @) =Q(C +CH+2(1—g F+ Y (1—-m)E,
and

(56 2F@=QF)QC*-C)+ ¥ (m—m)RE)QE)

131<)

provided that &(2) = 0. Thus, when Qe H'!(N,R) is the Kéhler class of a scalar-flat
Kéhler metric gy,

(5.7) AP =C-+C*+2(1—-g F+ Y (1—m)E,

and
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(5.8) 2dF|,=Ymodd¥ ,
where

(5.9) Y=Q(F)[C*—C 1+Q(C*=C )F+ Y (m—m)[QE)E,+ Q(E)E];

T HAS

here we have identified the cotangent space of H':!(N, R) = H*(N, R) with H, (N, R), and
each algebraic curve in N is used as short-hand for the homology class of its image in N.
Our goal is thus to show that Y is never a multiple of 4.

To do this, we begin by considering the case in which N % N, which is to say that
at least one of the curves C* arises by blowing up an isolated fixed point of the action.
By reversing the sign of Z if necessary, we may assume that C * arises in this way, and let
N’ denote the surface obtained from N by contracting C *. Because the self-intersection
of the image of F in N’ is +1, N’ is an iterated blow-up of CP,, and each generic fiber
F corresponds to a projective line. Moreover, the image of C~ in CP, meets each such
projective line in a point, and so C~ must be the proper transform of a projective line; if
n is the number of singular fibers of N — X = CP,, we thus have (C )2 <1— n. But

plugging

(5.10) F=Y mE,,

fiber
Q(C*)=0, and g =0 into (5.5), the equation & (22) = 0 becomes

(511) 0=Q(C +2F+Y(1-m)E)=Q(C +(2—-nF+ )Y E),

and hence n> 2. Thus (C7)><1—n< —1, so C~ cannot be a (—1)-curve, and N' = N.
Hence F: F =1, and, invoking (5.11),

F-Y=F- [—~C‘Q(F)—Q(C‘)F+ Y (m,—m])[Q(E,)E,+Q(EJ)E,]}

1<)

=—QF+C™ -} (m—-1)E)

=Q(F),

so that Y is certainly non-zero, and we need merely show that it is linearly independent
from d<.

To do this, let E, be the first curve in some singular fiber, chosen in such a way that
Q(E,) < Q(F)/3; the latter is possible because the fact that n = 3 tells us that F is homo-
logous to the sum of C~ and a collection of exceptional curves, at least 3 of which are
the first in their respective fibers. Let E,; denote the immediate successor of E,; the multi-
plicity of the latter curve is given by m, = — EZ, as may be proved by induction. Then
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E, Y=E,;- [—Q(C')F—- QF)C™+ Y (m— m)[Q(E)E,+ Q(E,)E,]:l

1<y

= —Q(F)+E, [ Y (- m,)Q(E,)Eo]

0<j

+Ey- [ Z (m; — mJ)Q(EJ)El:I +E,- [ Z (m,—-ml)Q(E,)El]

1<y 1<1

=-QF)+E} Y 1—-m)QE)+ Y (—EZ—m)

fiber fiber
—(my — my) Q(Ey) + (my — my) Q(E,)
=—-Q+EHQF)+2(1 + EHQ(E,).

On the other hand,

F-d¥=F- [C‘ +2F+).(1 —m,)E,] =3
J

and
Eo~dy=Eo~[c-+2F+2(1—m,)E,]=1+(1—m,)=2+Eg,
;
so that
F'Y F-d¥ _‘ Q(F) 3
E,' Y Ey,- d¥| | —-Q+EHQF)+2(1+EHQE,) 2+ E2

=4Q+ E)Q(F)—6(1 + E})Q(E,) .

Now this last expression is certainly non-zero if EZ is —1 or —2; and if EZ < —3, the
inequality —(EZ +1) Q(E,) < —(EZ + 1) Q(F)/3 yields

F-Y F-d¥

< FEHQ(F) 0.
£ r E, dy| <2CHEDAE)S

Hence Y+ 0modd¥ in H,(N), and the claim holds whenever N =+ N.

We now come to the case in which N = N. Then, since F- F=F- E; =0,

F-d5f=F’[C++C’+2(1—g)F+ Z(i—m,)E;] =2,
J

and

F-Y=F-[QF)[C*-C1+Q(C*—C)F+(E, terms)] = 0.

It therefore suffices to show that Y + 0 in H,(N). But
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CHY=Q(C*=C)+(CH)*QF)+ Y Q)
and ‘
CT=Q2C*=CH)—(CHQF)+ Y (1—-m)Q(E),
so that J

(CH2+(C7)?

1 .
5(Ct=C)r= .

QF)+ ) (m,—1)Q(E) .

Now —[(C*)?+ (C7)?] is precisely the number of times one must blow up along fixed
curves of the C*-action in order to obtain N from a fiber-minimal model; thus
—[(C*)? + (C™)?] = n, where n is the number of singular fibers of N — X. If, on the other
hand, the first and last exceptional curves of every fiber were to have area = Q(F)/4, we
would have

Z(m,—1)<n[Q(F)—2@:l =gQ(F),

1
and it would therefore follow that ~(C* —C7)-Y< -’ZQ(F ) — EQ(F ) =0, implying
. 2 2 2
Y+ 0, as desired.

We may therefore assume that either the first or the last curve of some singular fiber
has area <Q(F)/4; and, by reversing the sign of = if necessary, we may assume that the
curve in question is actually the first in its fiber.We thus have an exceptional curve E,
which meets C ~ and which satisfies Q(E,) < Q(F)/4. Now, by essentially the same calcu-
lation we used in the N # N case,

Ey, - Y=—-Q+E}HQF)+2(1+ E})QE,),

and in particular Y # 0 if EZ is —1 or —2. If, on the other hand, E} < -3, the inequality
1+ E3)Q(Ey) > 1+ E2)Q(F)/4 tells us that

E,-T> —%(E§+3)Q(F);O.

Thus Y £ 0modd¥, and HZ(ZN,G)):HZ(ZN,@Z,D,—,)=H2(Z,@®x“)=0, as
claimed. O
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