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§ 1. Introduction

Let (M, J) be a compact complex surface (i.e. a complex 2-manifold). A Kihler metric
g on M will be said to be scalar-flat if its scalar curvature R is identically zero.

There are a number of compelling reasons for studying scalar-flat Kihler surfaces.
These include the following:

® Such manifolds have anti-self-dual Weyl curvature [9]; indeed [12], they are the
only anti-self-dual compact Riemannian 4-manifolds with non-negative scalar curvature
and indefinite intersection form. The Penrose twistor correspondence [16], [1] then relates
them to the theory of complex 3-manifolds. Moreover, they are therefore absolute minima of
the conformally invariant functional (|W'jkl|? dvol, which is of independent interest
because its critical points also include all Einstein metrics [2].

® Such metrics are critical in the sense of Calabi [6] —in fact, they are absolute minima
of the functionals | R?dvol, [|R;;|*dvol, and [|Rj,|* dvol for metrics in a fixed Kahler
class.

@ As they include all Ricci-flat Kahler surfaces, the classification problem for scalar-
flat Kdhler surfaces may be considered a natural extension of the Calabi conjecture solved by
Yau [19], [20].

@ The unusual conformal geometry of such manifolds makes them exceptional for the
theory of harmonic maps between Kéahler manifolds [5].

Despite these compelling features of the problem, the subject has suffered from a
genuine dearth of examples. Using a plurigenera vanishing theorem of Yau [18] and the
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Enriques-Kodaira classification, it is immediate that a scalar-flat Kéhler surface must either
be Ricci-flat, rational, or ruled, and one may then show [3], [12] that, if the surface is
assumed to be non-Ricci-flat and relatively minimal — i.e. not obtained from anothér
complex surface by the o-process (‘“‘blowing up’’) — it is necessarily a quotient of the
conformally flat symmetric space S2 x # 2 by an isometric action of the fundamental group
I' of a compact Riemann surface. Until now, there have been no other examples except for
the Ricci-flat ones. As it had been shown [4] that there are obstructions to the existence of
scalar-flat Kdhler metrics which are more subtle than the Futaki invariant [8], there seemed
to be ample reason for pessimism regarding the construction of other scalar-flat Kéhler
surfaces.

We will now remedy this by producing explicit examples of scalar-flat Kéhler metrics
on blow-ups of ruled surfaces. These new metrics are neither Ricci-flat nor conformally flat,
since ¢ % 0 and p, + 0 for a blown-up ruled surface. Our approach, which is limited to
metrics with an isometric S !-action, exploits a variant of the generalized Gibbons-Hawking
ansatz recently described by the author in [13]. Despite the limitation of the method to
metrics with a Killing field, it nonetheless produces scalar-flat Kahler surfaces in most
deformation classes not excluded by Yau’s above-cited theorem; one may therefore hope
that the current examples will serve as a serviceable beach-head from whence to begin the
next phase of the assault on the general case.

The main-spring of the present construction is the ansatz presented in § 2, which
produces scalar-flat Kdhler surfaces from positive harmonic functions on hyperbolic
3-space. The harmonic functions we will use in practice are built up from the Green’s
functions of Fuchsian groups, and the next item on the agenda (§3) is therefore a self-
contained construction of these fundamental solutions in terms of Poincaré series. In §§ 4-5,
we then yoke these beasts of burden to our machinery, and proceed to bring in the promised
harvest of compact Kéhler surfaces.

If we choose to forget about complex structures and reverse the orientation, the present
construction yields self-dual conformal metrics on (S? X S,) # CP, # ... # CP,, where S,
is a Riemann surface of genus g = 2. It seems that the existence of such metrics can also be
deduced from the connected sum machinery of Donaldson and Friedman [7], although a
certain amount of care is needed in order to check that the twistor space Z of a generic
conformally-flat metric on (S? x S,) satisfies H*>(Z, 0(TZ)) = 0.

This article is the third in a series (cf. [13], [14]) in which explicit + self-dual metrics on
compact manifolds are constructed from hyperbolic multi-monopoles. The author has

nonetheless endeavored to make the current paper completely self-contained.

Acknowledgements. The author would like to thank Geoffrey Mess, Simon
Donaldson, and the anonymous referee for a number of helpful remarks.

§ 2. Metrics, monopoles, and moment-map magic

In this section, we will show that a positive harmonic function ¥ on a region of
hyperbolic 3-space # 3 gives rise to a scalar-flat Kéhler surface with isometric S *-action. In
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essence, this is an inverse of the Kahler quotient and moment-map constructions [13]. The
overall strategy of the present article is to apply this construction to harmonic functions
given as Poicaré series, namely sums of Green’s functions (‘“monopoles’) over orbits of
Fuchsian groups.

Let% = {(x,y,2)|y > 0, —1 < z < 1} denote the region R x R* x]—=1,1[ of R3, and
consider the Riemannian metric

_dx*+dy? - dz?
T (-zY)yr (1-z)?

h

on %. Then (%, h) is just hyperbolic 3-space #* equipped with an unusual coordinate
system; if we set (r, s, 1) = (x, yz, y|/1 — z%), h becomes

_dr?4ds?+dr?

h e

b

yielding the usual upper-half-space model. Notice that the half-plane z =0, y > 0, is
totally geodesic.

Let ¥ > 0 be a function on # < % which satisfies AV = 0, where A is the Laplace-
Beltrami operator of the hyperbolic metric 4 on %; thus we assume that

yZI/xx+y2Vyy+(1—zz)sz=0'

Since this is equivalent to the statement that the 2-form *dV is closed, where * is the Hodge
1 .
star operator of A, we may consider the deRham class [ﬂ *d V], and it makes sense to

impose the extra condition that this be an integral class — i.e. in the image of
H*(W,Z) - H*(W,R).

With this hypothesis, there is then a circle bundle 7 : M — #” which carries a connection
form w with curvature

do = xdV.
We now equip M with the Riemannian metric
g=1—-z)(Vh+V 'w?

dzz+1_

V 2 2
—)Tz'(dx +dy*)+ =22
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and the almost complex structure J defined by

1—22

dx — dy, dz — w.

I then claim that J is integrable, and that g is Kdhler with respect to J.

Indeed, the differential ideal generated by dx + idy and 1&12—2 + iw is closed, since

Vdz . dz .
d[l—zz +lw:|=dVA:—2‘+l*dV

dz

= (Vedx + Vydy) A 1=

) dy A dz dz A dx dx A dy
+z(l/;,—1_z2 + ¥, T +V, JE >

V,—iV, d
= (dx + idy) A [ : Ty dz 4+ V—Z]
¥y
Since g is Hermitian with respect to J, we may consider its associated 2-form

Q=y—V2dX/\dy+dZ/\ w,
and observe that
vV
d9=%5 Adx Ady—dz A xdV

v,
=K§d2/\dx/\ dy—dz A (y—;dx/\dy)

(=

so that (g, J) is Kéhler.

We now consider the scalar curvature of g. This can be done most efficiently by first
noticing that, if (e, e,, e5, e,) is the frame dual to the coframe (dx, dy, dz, w), then e, is a
Killing vector field preserving w, and hence

1— 2
e4—iJe4=e4+i( VZ )e3

is a holomorphic vector field; hence, since dx + idy is a holomorphic (1, 0)-form, there exist

) 14
holomorphic charts such that the coordinate volume form is 152 dx A dy A dz A . But
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the volume form of g is

1 vV
EQ/\Q=de/\dy/\dZ/\w,

5 .
7 . . .. .
5— times the coordinate volume form. The Ricci form is therefore

1—2z2
P=—iddlo ( )
g y2

1
= — Ede[log(l —z%) —2logy]

or

N
QU

- 2

1 ——22sz_2de
1-2 y

dx A dy
y: o

=d@zV 'w) -

Hence

QAP=KZdXAdyAd(zV‘lw)+d2Aw/\d(zV'1w)

y

1

——dz Ao Adx Ady

y

4 - -1
=@V Ydxrdyrdzro+zV 'dondz Ao
y

1

——dxandyndzro

14

A

= I:Kz(zV")z+zV‘1—‘— 2:|dx/\ dyndz Ao
4 y

S

1 1
=| = zVV—lz——]d)C/\dyAdZ/\w
I:yz( ) 7
0,

showing that the scalar curvature (@, P) = *(Q A P) of g vanishes.

165
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§ 3. Green’s functions and Fuchsian groups

In the previous section, we described a method which constructs scalar-flat Kéhler
metrics from positive harmonic functions on hyperbolic 3-space. In this section, we give an
elementary construction of an important family of such functions, namely the Green’s
functions of hyperbolic 3-space modulo the fundamental groups of compact Riemann
surfaces. For a more general construction of such objects, cf. [17].

LetI' =« PSL(2, R) = SO, (1, 2) be the fundamental group of some compact Riemann
surface S, of genus g = 2; we will identify I" with itsimage in PSL (2, C) = SO, (1, 3) via the
tautological inclusion SL (2, R) ¢ SL(2, C). The Fuchsian group I' then acts on hyperbolic
3-space in a proper, discrete manner. In fact, this action is easy to understand in terms of our
model % for #3; if

(x,y) = (%)

is a fractional linear transformation given by

a(x+iy)+b

A= et +d

for some given C ld)) € SL(2, R), there is an induced isometry of (%, /) given by

x,,2) — (X,7,2).

For p = (x¢, yo, 2o) € % an arbitrary point, we now let pI" denote the orbit of p under
I' = n,(S,). Note that pI' is a discrete subset of a half-plane z = constant, y > 0. Fora eI,
we denote the image of p under a by pa.

Let g, : #* — Rdenote the hyperbolic distance from p«, and let G, = [e?% —1]71,
which is the Green’s function of pa with the normalization

AG,, = —2nd,,,

where A is the Laplace-Beltrami operator on # > and J,, is the Dirac delta distribution
centered at pa. We can now try to define the Green’s function G, of pI" by

(1) Gpl‘ = Z Gpa'

ael

Lemma 1. The series (1) converges to a smooth function on # > — pI'. Moreover, G,r
solves the equation

AGr=-21) 9,

ael’

in the sense of distributions. Finally, G, considered as a function on % — pI’, is smooth up to
the boundary at z = +1, y > 0, and vanishes at these surfaces.
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Proof. We begin by considering the function r,: #2 — R given by the hyperbolic

2 2

distance from (x,, y,) in the upper half-plane #2 = R x R* with respect to w,

and then extend this to % = # % x ]—1,1[ as a function independent of z. We then have
) dx? + dy? dz* ) dx?* +dy?

Q, =1y, Since h = d—29)y% + d=227 dominates 3 term by term. (In fact,

0, > r. if z, + 0.) Since a fundamental domain & in # 2 for I' has area equal to
area(S,) =4n(g—1),

letting the diameter of £ be D, we see that the number ny of elements of pI' within the
annulus R < r < R+ 1, where r is the distance from an arbitrary point in 3 2, satisfies

AR+D+1 — AR—D

"= 4rg—1)

- R\ . s . .
where A = 4n sinh? (—2—> is the area of a hyperbolic disk of radius R. In particular,

1
R+D+1
nR<§e 5

For some ge %, let b < pI be the subset consisting of points whose projections to
H?2=Rx R* are contamed in a hyperbolic annulus a < R < b centered at the projection
of g. On the ball of radius 1 about g€ 5# 3, we therefore have

ZG <Z 2(11)

aey

l+D+1

<Z

< eD+4"‘J

for k > j > 1 any integers. Letting % denote the (finite) set of a € I' for which the projection
of pa to # 2 is within distance 2 of the projection of g, we conclude that

2. Gy

ael - &

converges uniformly on a neighborhood of ¢, and so is continuous in a neighborhood of our
arbitrary point gq.

It follows that the series (1) for G, defines a continuous function on 3 — pI'. It also
follows that G, is a well-defined element of 2’, where 2 denotes the smooth, compactly
supported functlons of # 3 with the topology of uniform convergence on compact sets, and
that, as such, G, is a solution of

AGp=-2mY 3§,

ael

Elliptic regularity then guarantees that G, is smooth away from prI".
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Finally let us examine G, at the surfaces z = +1, y > 0. To do this, notice that
dx? + dy? N dz?
y? (1-2z%?

z-coordinate of p,
0y = \/ / —In

14z 1—c>

1
1
+2lﬁ‘ “(1—z 1+ec

1 1
ez"“Zel/ir‘max l+z1-c 21/5’ 1 —z 14 c\2)/2
- 1-z1+c¢ 142 1—e

= N
— e\ f1— 2)/2
ez"’—1>1eﬁ"max Leil=c V_,I z 1+¢\22
2 1=z 1+c¢ 1+2 1=c¢c
1+3|c|
3+ |c|

dominates term by term. Hence, letting ¢ =z, denote the

Thus

and

provided that |z| > . Hence

1 1
U Vo i [(LH2 1=\2 (1-z 14c\22
eZe=—1 1—z1+c¢ "\1+z1-—c¢c '

But ) e -V converges by an argument similar to that used for ) e ~?", because ng ~ e*®
ael ael’
and the exponent here is less than —r, by a definite factor. We conclude that G, is

continuous up to the surfaces z = +1 and vanishes there. But then a regularity result of
Robin Graham ([10], p. 631, Theorem 11.4) guarantees that, by virtue of the fact that
AG,r =0for|z| > |c|, G,risin fact smoothuptoz=+1. QED

§ 4. Blown-up product surfaces

We now use the procedure of § 2 together with the Green’s functions constructed in § 3
to produce some specific scalar-flat Kdhler manifolds.

Let p = (a, b, c) e % with ¢ > 0, and set ¢ = (a, b, —c¢). Let
V‘= 1 + Gpr + qu
where the Green’s function terms are as in § 3. Notice that

V(x’ya Z) = V(X,}’, _Z)a
so that
«dV|,_o=0.
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1 . .
Moreover, [—2; *d V] € H*(% — pI' — qI', R) is an integral class, since for any compact
surface S <« % — pI' — qI’, we have

[*dV=[dxdVv
5 7

=—2n j Z (5pa+5qa)

I ael

=-2n#[T n(pruql)],

where J < % is the region inside S.

Now let ny: M, - % — pI' — qI" denote the circle bundle with connection form
such that dw = * dV; because % — pI" — qI' is simply connected, this defines M, uniquely.
The construction from § 2 then tells us that

g=0=z)(Vh+V 1w?

is scalar-flat and Kaéhler.

While the manifold (M, g) is incomplete, there is a standard manner of completing it,
namely the method of “nuts and bolts™ [11]. The idea is to add a single point to M, for each
pointin pI" U qI', and to add surfaces B? along z = +1 and z = — 1. The circle action on M|,
will extend to the larger manifold M > M|, in such a way that the added isolated points
(“‘nuts”) and added surfaces (“bolts’”) become the fixed points of the action.

In order to carry this out, let us examine the metric g near a point of pI'ugqrl.
Introducing exponential polar coordinates on % centered at this point, our formula for the
metric becomes

g _1_ 2 | winh2 1 o,
1_22—<2r+F> (dr? + sinh rgsz)+<2r+F )

where F is a smooth function on a neighborhood of 0 € R3. (Here gs. denotes the standard

metric of the unit 2-sphere.) For r small, the circle bundle n, : M, - % — pI' — qI" may be
identified with

p:C* > R3,

Z: 2 —|Zy _ =
(Z,,2Z,) — ('-iz—li ImZ,Z,,ReZ, zz> ,

restricted to the complement of the origin to yield a map
0o:S3xRT - SExR*,
QZ
(I’Q) L <H0pf(t)’ 7)

when written in polar coordinates.
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Introduce an orthonormal coframe {o,, 6,, 03} such that the pull-back of the area
form of (S?2, g5.) is 40, A a,. Since

doy =20, A 0,,
we may, after a gauge transformation, take
w=—0;+ p*0
where 0 is a smooth 1-form on a neighborhood of 0 € R3. Thus

g
122

=1 +0*F)do*+(1 +¢*F)e*(62+ 0+ (1 +02F) 'g2(05— p*0)?,

where F is the smooth function

4m © 4am+2

=~ - 0 [4
F=2 _e” o,y @7
FY Gmroi T22 ama)

Since p* 0 vanishes at 0 € C?, g extends across the originin R4 = C?, and in fact 1 g 7

agrees with the Euclidean metric do?+ ¢2(6f + 07 + 0?) at the origin. The parallel
complex structure J now automatically extends smoothly across the origin of R* in such a
manner as to be parallel with respect to the metric connection: in fact, its value at 0 may be
obtained by parallel transport along any curve passing through 0, this being independent of
path because the curvature of g is non-singular.

We now consider the behavior of the metric near z = — 1. First recall that V is of the
form

V=1+(1-z3f
for f a smooth function. Thus

*dV =f.dy ndz+f,dz A dx+ Jl}/%dx A dy

is smooth along z = —1, y > 0, and we can write *dV = d¢ for ¢ a smooth 1-form defined
on a neighborhood of z = —1, y > 0 in % < R>. The metric can now be written as

dx?+dy?  dz?
g=[1+f(1—z2)]( yzy s

) ++fA =291 -z (dt+ 9)?

near z = —1 by choosing a suitable local trivialization for M, - % — pI' —qI".
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Let us introduce a new variable g€ [0,1] by setting z = —]/1 — g2. The metric
becomes

dx? + dy? db2
g=(1+qu)< i > +1_qqz>+(1+¢12f)"‘q2(dt+¢)2-

Notice that, in (x, y, q) coordinates, ¢ has vanishing dg component along ¢ = 0. Since g
differs from

dx? +dy?
g =0+ q’f)—yz—y + (dg* + q*dt?)

by sums of products of qdt, qdq, and q¢ with smooth coefficients, if we introduce new
coordinates u and v by

u=gqcost,
v=gsint,
we have
dx?* +dy?
g=_—x ;_2 .2 +du?+dv*+ 0u?*+v?).
Thus we may adjoin a copy of the half plane ®x R* along z = —1 to obtain a larger

Riemannian manifold. The complex structure J extends to this manifold, and in fact is given
by dx > dy, du+> dv when u = v = 0. The adjunction of another half-plane at z = +1

arises by the same trick, with ¢ = /1 —z2.

Since by construction *d V' vanishes when restricted to z = 0, our connection w is flat
over this simply connected real 2-surface. Let C = M therefore denote any horizontal lift of
this surface. The formula for J then makes C a holomorphic curve, and in fact x + iy is a
holomorphic coordinate on C.

For each aeI', we now have a circle’s worth of isometric lifts M — M of the
corresponding isometry % — 4%, since, by construction, ¥V is I'-invariant; the only ambiguity
in choosing our isometry M — M corresponds to a global gauge transformation of
ny: My = WU — pI' — qI'. Any such lifting will send the holomorphic curve C to another
horizontal lift of z = 0, and so there is a unique lift of « which sends C into itself. With this
choice of lifting, we now have an isometric action of I' on M. Notice that this action is
holomorphic. '

We now have set £ = M/I'. The map # — #?:(x,y,z) — x + iy then induces a
holomorphic map
p:Z =+ .8,

where S, is our Riemann surface of genus g. Since M — #’ 2 is a proper map, X is a compact
complex surface, which we will now analyze.
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First notice that the line segments

{@b) x[c,1]c¥
and

{(@,b)} x[-1,—clc¥

correspond to 2-spheres in M, since they are obtained from cylinders Jc,1[ x S! and
1—1, —c[ X S! by adjoining two points to obtain compact spaces; inspection of our nuts
and bolts procedure even shows that these 2-spheres are smoothly embedded. Moreover,
they are complex curves, £, and E,, in M because the holomorphic function x + iy is
constant on them. Finally, they have self-intersection —1, since replacing, say,
{(a, b)} x [c,1] with some other line segment from p = (a, b, ¢) to z = 1 results in another
2-sphere which meets our holomorphic curve E, in exactly one point, and the index of this
intersection may be shown to be negative by local inspection of the nut construction. These
exceptional holomorphic curves £, and E, then project injectively into X to give exceptional
curves E,, E, c X of the first kind.

Let us blow down X at E, and E, to obtain a new compact surface 2. The holomorphic
map u: X — S,induces a holomorphic projection /i : h RN S, and now every fiber is a genus
0 curve, either corresponding to a segment of the form {(a’, ")} x [—1, 1], where (a’, b’) is
not in the orbit of (a, b), or to a segment of the form {(a, b)a} X [—c, c] for a € I'. Thus
fg:2 - S, is a (minimal) ruled surface over S,. Moreover, /i has three disjoint holomorphic
sections, corresponding to C/I' and to z=+1. Hence /i is a trivial /-bundle, and
bof-= S, X P,. Thus X is obtained from S, X /, by blowing up two points. We have proved the
following result:

Theorem 1.  Let X be the complex surface obtained from S, x P,, g 2 2, by blowing up
two distinct points on afiber { pt} X P,. Then X admits a Kdhler metric of zero scalar curvature.

In fact, we can even say what the Kéhler class is, since the exceptional divisors £, and
E, have area 2n(1 — ¢), a fiber of y has area 4=, and the proper transform of the surface S,
givenby z = —1 hasarea4n(g — 1),so that C/I' = S, x {pt} hasareadn(g — 1) + 27 (1 — o).

Let us close this section by noticing that we could have instead chosen ¥V to be given by
1+G,r+Gyr+ ... +G, r+ G, r,wherethepoints {pj> 9;} are symmetrically placed and
have distinct orbits under I'. This allows us to endow the blow up of S, x P, at a collection of
the form {m points} x {2 points} with a scalar flat K&hler metric; in fact, some of these points
may even be allowed to coincide, since there is no reason why we may not take several of the
(distinct) p;’s to have the same (x, y)-coordinates. In other words:

Theorem 2. There are zero scalar curvature Kdhler metrics on the blow-up of S, < P, at
any even number of points, at least when the points are arranged in a sufficiently symmetrical
manner.

Note that, by contrast, the blow-up of S, X P, at one point cannot admit a constant
scalar curvature Kdhler metric, since its automorphism group is not reductive [15].
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§ 5. Other ruled surfaces

We conclude this article by noticing that the same technique also yields scalar-flat
Kéhler metrics on blow-ups of certain ruled surfaces which are non-trivial /P, -bundles.

Let p and g be two points of the half-plane z = 0, y > 0; we will assume for simplicity
that they are distinct elements of the same fundamental domain 2 of I', and let y be an arc
from p to g which is contained in the interior of #. Again we take

V=1+G,r+G,,
and consider the complex surface M obtained by completing the circle bundle
nog: My —» U —pl' —qI
by the “nuts and bolts” procedure. We would now like to make I' act on M.

To do this, notice that the connection w on 7, is again flat when restricted to z = 0,
since again V(x, y, z) = V(x, y, —z). Nonetheless, this restricted connection is not a priori
trivial, since the complement of pI" U ¢qI' in z = 0 is not simply-connected.

In fact, the holonomy of this flat connection is exactly Z,, and parallel transport
around a loop just counts, modulo 2, the number of points of pI" U gI" enclosed by the loop.
To see this, notice that such a loop in z = 0 bounds a surface S, in z = 0, and the holonomy
transformation around the loop is thus given by

i|do i *dvV
e S =e S

But if S is the closed surface consisting of S, and its reflection in z, the fact that V'is evenin z
implies that

1
s{)*dV=§

[*xdV=—mm
S
where m is the number of points of pI'ugI" enclosed by the surface S in 3-space, or

equivalently the number of points of pI" U g enclosed by the given loop 05, in the plane
z=0.

We conclude that the connection  is trivial on the complement of yI" in z = 0. Let C,
denote a horizontal lift of this region # 2 — yI', which is a holomorphic curve in M. We then
lift the action of I' to M by requiring that it stabilize C,. Set £ = M/T".

Z is again not a minimal surface. Indeed, if p = (a, b, 0) and g = (@', b',0), the inverse
images of {(a, b)} x [0,1] and {(a’, b')} x [0, 1] are rational curves E, and E, in M with self
intersection — 1; their images E, and E, in X are then disjoint exceptional divisors of the first
kind. Let 5 denote the surface obtained by blowing these curves down.

12 Journal fiir Mathematik. Band 420
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As in the previously considered case, 2 comes equipped with a holomorphic projection

p:Z - 8,
which induces a projection
j:2 - S;;

again, /i is a [P, bundle over S,.

This time, however, the bundle is not trivial. In fact, if we continue C, as a horizontal
submanifold of M, and then take its closure in M, the result is a complex curve C which is a
2-fold branched cover of the half-plane z=0, y >0, with branch locus pI'ugqr.
Descending to the quotient £ = M/T’, the curve C/I" is a 2-fold branched cover of S via the
map pu:Z — §,. If we then consider its image in ¥, we find that it meets the surface
corresponding to z = 1 in exactly the two point corresponding to E; and E,. Thus

S P(Z @ O0)

where & — S, is a line bundle such that ¥ ®2 is the divisor of two distinct but arbitrary
points of S,. Notice that changing the I'-action by an element of H 1(S,, Z,) alters our
square-root .Z of this divisor in the obvious manner, and we therefore sweep out all choices
of square-root in this way. Thus we have proved the following:

Theorem3. Letr, andr, be arbitrary points of a Riemann surface S, of genus g 2 2. Let
& be a square-root of the divisor line bundle [r,] + [r,], and let

5= P(Z @ 0)

be the associated PP, bundle over S,. Blow up 2 at the points corresponding to the zero vectors 0,
and 0,, of the fibers of ¥ over ry and r,. Then the resulting manifold X admits a scalar-flat
Kdhler metric.

Note that 2 is not even homeomorphic to the product P, x S, so this result is quite
different from Theorem 1.

Finally, let us consider a combination of chosen points, some as in Theorem 3, some as
in Theorem 1, and again take

V= 1 +2(Gp1r+qur).

The result is the following:

Theorem 4. Let ¥ — S, be the square-root of the divisor of an even number 2m of
points. If P(¥L @ O) is blown up at 2l points, | = m, in sufficiently special position, then the
resulting surface X admits a scalar-flat Kdhler metric.

Here “sufficiently special”” means that the zero vectors of the divisor points are to be
blown up, and the other points are constrained to lie on the “zero” and “infinity” sections of
P(¥ @ 0), paired up in the obvious manner.
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So far, we have proceeded by first constructing the universal cover M of X, and then
taking the quotient by a I'-action, which must also be constructed. However, there is a more
robust alternative available. We may instead think of #/I' = S, x ]—1,1[ as a hyperbolic
3-manifold, and construct a complex surface £ — S, out of a harmonic function

V=1+2G,r

. 1
on (S, x]1-1,10) — {[pj]} provided that o * dV defines an integral class in deRham

cohomology. This condition will be satisfied iff

1
— [ sdvez
2n ng{l}

for some (and hence any) ¢ € ]—1, 1[ distinct from all the z-coordinates c; of the given points

[p;1€ S, x 1—1,1[. Fortunately, integrals of this type can be evaluated explicitly, using the
following observation:

Lemma 2. For a point [p] = pI' € S; X 1—1,1[ with z-coordinate c,
| *dG,=-mn(1+0),
S, x {1 —¢}

provided that 0 <e <1 —c.

Proof. Letting # = # 2 x {1 — ¢} = % denote a fundamental domain in
Hix{1—¢}

for the I'-action, we begin by observing that

| *dG,r = [ xd} G,

S, x{1—¢} RX ael

=Z I *dG

14
aell Ra~1

= j *dG

-
H2x{1—¢g)

In order to compute the latter integral, note that, in exponential polar coordinates about
peN3, * dG, is minus one-half the area form of the 2-sphere, so the above integral
essentially gives the measure of the set of geodesics through p which pass through the surface
#2 x {1 — &}. The latter is most easily determined by passing to the upper half-plane model

via the coordinate change (r, 5, t) = (x, yz, y|/1 — 2 2) mentioned in § 2. Let the coordinates

of p be (r,s,t) = (2, B, ), so that ¢ = —[}_2__2 The integral we wish to evaluate is then
+7

minus one-half the area of the half-plane t = 0, s > 0 with respect to the area form induced

by the exponential map at p, since, assuming that 0 <g<1—¢, a directed hyperbolic
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geodesic through p terminates on ¢t =0, s> 0 iff it first passes through the half-plane
_V e2—¢)
r= 1—¢
sphere at infinity of #2 is a conformal map (as is made most clear by considering the
Poincaré ball model of # 3, with p at the origin), and, in the upper-half-space model, sends
the north pole to infinity, the south pole to (r,s,¢) = (a, f,0), and the equator to
r?+s2=1y2 t=0. Notice, however, that these properties are shared by stereographic
projection to the plane ¢ = 0 from a unit 2-sphere in R with north pole p. These two maps
are therefore identical. We must therefore calculate minus one-half the area of the region of a
unit 2-sphere below a plane through the north pole, the normal vector of which makes an

B
complement of a spherical disk of angular radius ¢. Hence

s, t> 0. Now the exponential map from the unit tangent sphere at p to the

angle of ¢:=cos™ with the vertical. The latter region, however, is just the

| +dG, = [4n—2n(1 —cos )]

H2x{1—¢}
=—n(1 4 cos )
=—n(14+¢). QED

We thus find a much weaker set of conditions for carrying out our construction: it is
sufficient that the set {c;} of z-coordinates for our centers {[p;1} = S, x ]—1, 1[ satisfy

1) icjeZ;

ji=1
and

™M=

@

¢;=n(mod?2).

ji=1

This can be achieved (with —1 < ¢; < 1) for any n = 2. Thus we obtain:

Theorem 5. For all natural numbers n = 2, there are scalar-flat Kdhler surfaces X
obtained from minimal ruled surfaces X — Sy, 8 2 2, by blowing up exactly n points.

In contrast to our previous results, however, we do not (at present) have a systematic
method for determining which minimal ruled surfaces ' correspond to given configurations
of points.2) However, the minimal models of surfaces arising from our construction will
always be of the form

=P ®0)

for some holomorphic line bundle & — S, since ¥ — S_automatically has two sections,
corresponding to z = +1; moreover, X is obtained from 2% by blowing up points along the

2) Note added in proof. Indeed, 2 depends on an extra piece of data, namely a flat circle bundle over S,. For
this reason, % can be taken to be any line bundle of the appropriate degree.
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‘zero’ and ‘infinity’ sections of P(Z @ ). In order to specify our minimal model ¥
uniquely, we may choose to require that all the blow-ups occur on the zero section. The

1 n
degree of % will then equal 5(” + ) cj).
j=1

In closing, let us remark that the same techniques explored here can also be applied to
other Kleinian groups. For example, if we replace our compact Riemann surface S, with a
compact Riemann surface minus a collection of disks, the resulting self-dual manifolds

compactify to yield explicit anti-self-dual metrics on m(S*! x §3) # nﬁ”z. Details of a
number of such constructions are currently being worked out by Jongsu Kim.
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