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Let Y2 bhe a smooth compact connected manifold.

Moduli space of complex structures defined by

M(Y) = { Integrable complex structures ./ on Y}/ Diff (V).

Kuranishi —

M(Y) is locally finite-dimensional.

Question:

[s MM(Y") globally finite-dimensional?

We’ll see:

In general, the answer is No!
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w : / — CIPq is a holomorphic submersion.

By contrast, ¢ : Z — M is not holomorphic.



Examples:



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form

O=dzP Ad?+ -+ d2F LA d2k



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form

O=dzP Ad?+ -+ d2F LA d2k

Calabi-Yau Theorem =—>



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form

O=dzP Ad?+ -+ d2F LA d2k

Calabi-Yau Theorem =
1! Calabi-Yau metric g on (M, J) with [w]| = |wg].



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form

O=dzP Ad?+ -+ d2F LA d2k

Calabi-Yau Theorem =
1! Calabi-Yau metric g on (M, J) with [w]| = |wg].

Bochner’s Weitzenbock argument —-

V= 0.



Examples:

Let (M S gp) be a compact Kahler manifold which
admits a holomorphic symplectic form

O=dzP Ad?+ -+ d2F LA d2k

Calabi-Yau Theorem =
1! Calabi-Yau metric g on (M, J) with [w]| = |wg].

Bochner’s Weitzenbock argument —-
V) =0.

. (M, g) is hyper-Kahler.
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Flat Tori:
A= 7
g=|d >+ - |d2?F)?

() = dz! /\0l22+---+d22k_1 A dz2k
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Admits hyper-Kahler Kahler metrics.
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Irreducible Higher-Dimensional Examples:
(Beauville '83), generalizing Fujiki:
(M4 J) = Hilbert scheme of & points on K3.

Natural desingularization of (K3 x --- x K3)/Gy..

-~

k

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:
(Hilbert scheme of k + 1 points on T#) /T4,
O’Grady 99, '03: sporadic examples M 12 and M2V,
All a priori simply connected!

Multiplicativity of Todd genus + Cheeger-Gromoll.
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Set /= deg(f).
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Indication of Proof.

e 1 uniquely defined holomorphic line bundle
7 — po—1/(2kt+2)

over f*Z, where ( = deg(f).
o W(f*Z,O(L)) =2.

e T'he holomorphic projection
f*Z — CIP4

is given by the linear system |L]|.

e Kodaira-Spencer map of the family
f*Z — CPPy

vanishes at, and only at, Crit(f), with exactly the
same multiplicities.
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Theorem A. The moduli space IM(M x S?) of
complex structures on M xS 2 s infinite-dimensional,
in this following sense:

For any positive integer N, there are holomor-
phic embeddings

DN < 9Mm(M x 57
of the N-dimensional polydisk

DN::px...xQCCN
N

into the modult space.

(Can choose large families of high-degree
ft . CP; — CPy
that are distinguished by Crit(fy).)
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Well, thanks for your attention!



It’s a real pleasure being here!




Thanks for the invitation!




