Twistors,

Hyper-Kähler Manifolds, &

Complex Moduli

Claude LeBrun Stony Brook University

Canadian Mathematical Society Winter Meeting, Toronto, Ontario December 3, 2022

Key references:

Twistors, Hyper-Kähler Manifolds, and Complex Moduli,

Key references:

Twistors, Hyper-Kähler Manifolds, and Complex Moduli,

Special Metrics and Groups Actions in Geometry, Springer INdAM series, vol. 23, 2017.

And

Topology versus Chern Numbers for Complex 3-Folds,

And

Topology versus Chern Numbers for Complex 3-Folds,

Pacific Journal of Mathematics 191 (1999) 123–131.

Let Y^{2m} be a smooth compact connected manifold.

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi:

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi:

For J near a given J_0 , local moduli given by

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi:

For J near a given J_0 , local moduli given by

$$\mathcal{A}/\mathrm{Aut}\ (Y,J_0)$$

for some complex-analytic subvariety

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi:

For J near a given J_0 , local moduli given by

$$\mathcal{A}/\mathrm{Aut}\ (Y,J_0)$$

for some complex-analytic subvariety

$$\mathcal{A} \subset H^1(Y, \mathcal{O}(T_{J_0}^{1,0}Y)).$$

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

$$\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$$

$$Kuranishi \Longrightarrow locally$$

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \leq h^1(Y, \mathcal{O}(T^{1,0}Y))$$

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

 $Kuranishi \Longrightarrow$

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \leq h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \leq h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

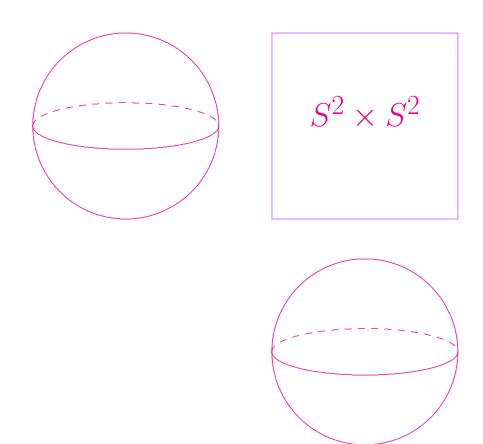
For example, let $Y^4 = S^2 \times S^2$.

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.



the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

the estimate

$$\dim_{\mathbb{C}}\mathfrak{M}(Y) \leq h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

$$F_{2n} = \mathbb{P}(\mathcal{O}(2n) \oplus \mathcal{O})$$

$$\downarrow$$

$$\mathbb{CP}_1$$

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

$$F_{2n} = \mathbb{P}(\mathcal{O}(2n) \oplus \mathcal{O})$$

$$\downarrow$$

$$\mathbb{CP}_1$$

$$h^{1}(F_{2n}, \mathcal{O}(T^{1,0}F_{2n})) = 2n - 1 \quad \forall n > 0$$

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

$$F_{2n} = \mathbb{P}(\mathcal{O}(2n) \oplus \mathcal{O})$$

$$\downarrow$$

$$\mathbb{CP}_1$$

$$h^{1}(F_{2n}, \mathcal{O}(T^{1,0}F_{2n})) = 2n - 1 \quad \forall n > 0$$

$$h^{0}(F_{2n}, \mathcal{O}(T^{1,0}F_{2n})) = 2n + 5 \quad \forall n > 0$$

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

$$F_{2n} = \mathbb{P}(\mathcal{O}(2n) \oplus \mathcal{O})$$

$$\downarrow$$

$$\mathbb{CP}_1$$

$$h^{1}(F_{2n}, \mathcal{O}(T^{1,0}F_{2n})) = 2n - 1 \rightarrow \infty$$

$$h^{0}(F_{2n}, \mathcal{O}(T^{1,0}F_{2n})) = 2n + 5 \rightarrow \infty$$

the estimate

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

"even" Hirzebruch surfaces

$$F_{2n} = \mathbb{P}(\mathcal{O}(2n) \oplus \mathcal{O})$$

$$\downarrow$$

$$\mathbb{CP}_1$$

 $\dim_{\mathbb{C}} \mathfrak{M}(S^2 \times S^2) = 0$, but \mathfrak{M} non-Hausdorff.

the estimate

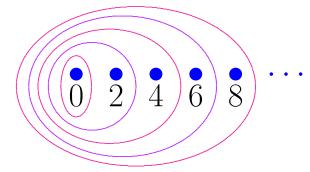
$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \le h^{1}(Y, \mathcal{O}(T^{1,0}Y))$$

may not be sharp.

For example, let $Y^4 = S^2 \times S^2$.

All possible complex structures:

"even" Hirzebruch surfaces



 $\dim_{\mathbb{C}} \mathfrak{M}(S^2 \times S^2) = 0$, but \mathfrak{M} non-Hausdorff.

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

$$\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$$

$$Kuranishi \Longrightarrow locally$$

$$\dim_{\mathbb{C}} \mathfrak{M}(Y) \leq h^1(Y, \mathcal{O}(T^{1,0}Y))$$

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

 $Kuranishi \Longrightarrow$

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi ⇒

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

Question:

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi ⇒

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

Question:

Is $\mathfrak{M}(Y)$ globally finite-dimensional?

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi ⇒

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

Question:

Is $\mathfrak{M}(Y)$ globally finite-dimensional?

We'll see:

Main Problem:

Let Y^{2m} be a smooth compact connected manifold.

Moduli space of complex structures defined by

 $\mathfrak{M}(Y) = \{ \text{ Integrable complex structures } J \text{ on } Y \} / Diff(Y).$

Kuranishi ⇒

 $\mathfrak{M}(Y)$ is locally finite-dimensional.

Question:

Is $\mathfrak{M}(Y)$ globally finite-dimensional?

We'll see:

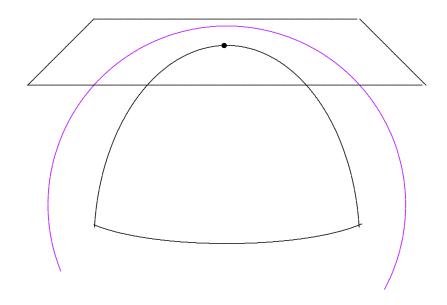
In general, the answer is No!

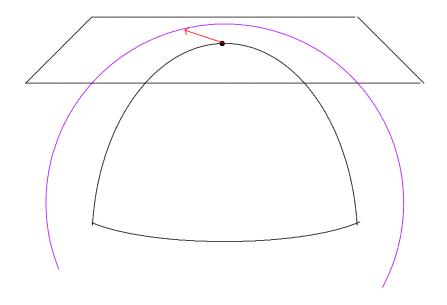
Our route to this conclusion:

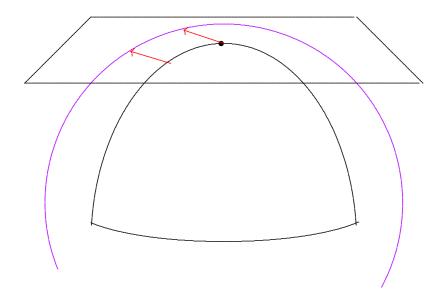
Our route to this conclusion:

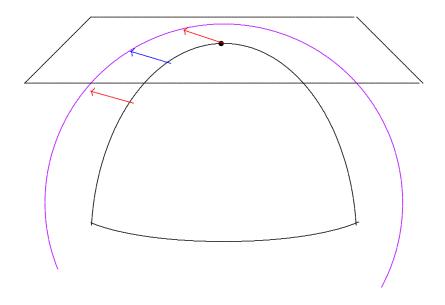
Theory of Riemannian Holonomy

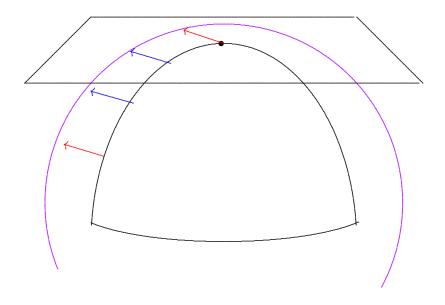
Recall...

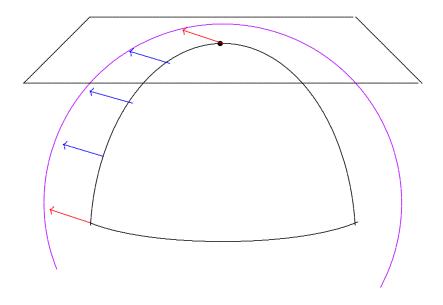


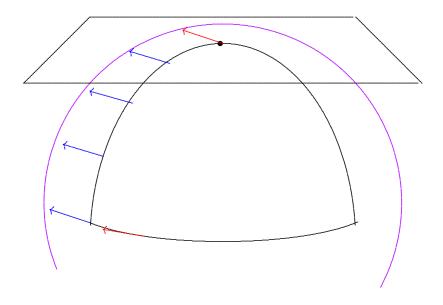


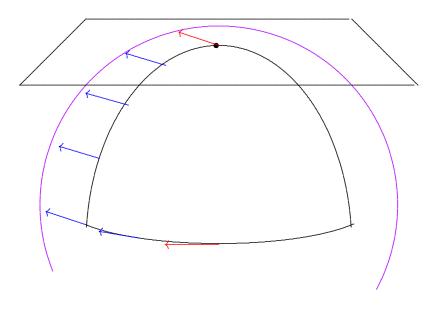


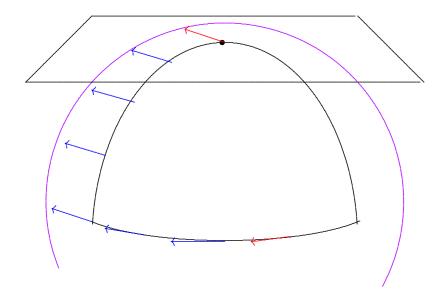


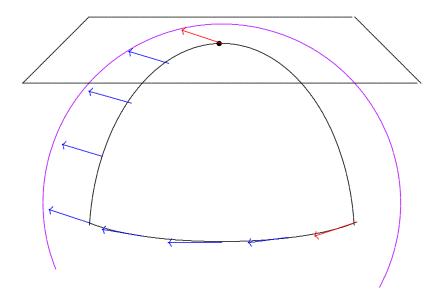


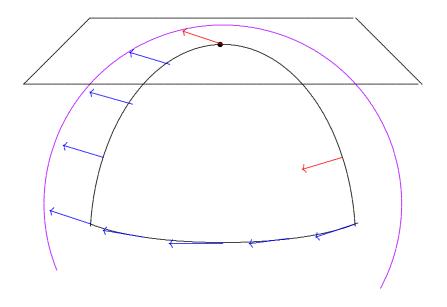


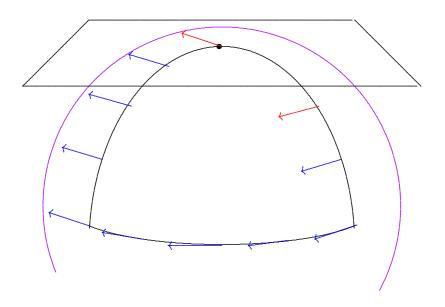


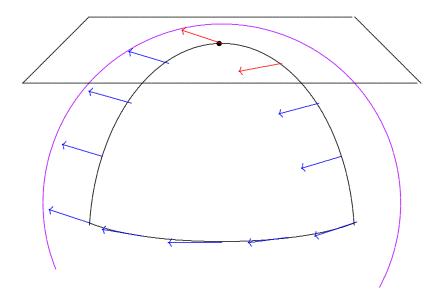


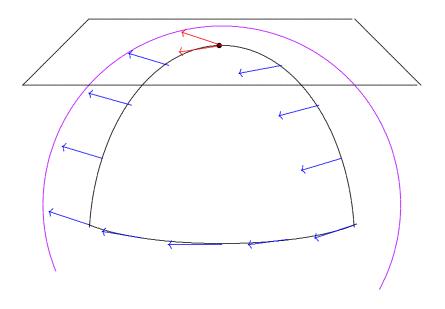


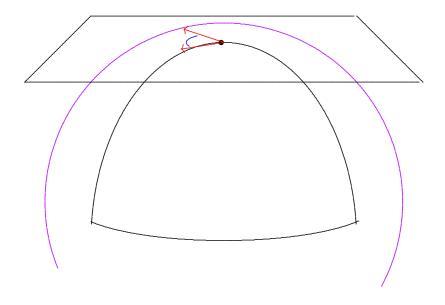




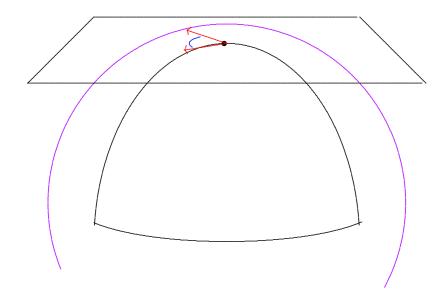






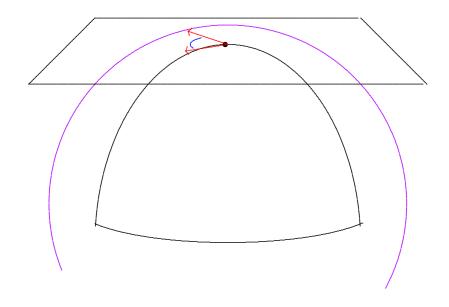


 (M^n, g) : holonomy $\subset \mathbf{O}(n)$



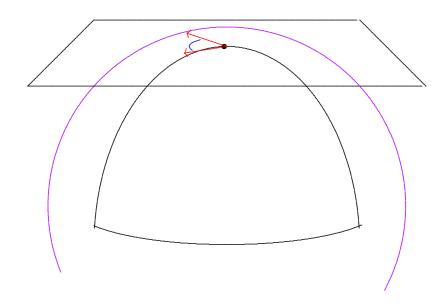
Kähler metrics:

 (M^{2m}, g) : holonomy



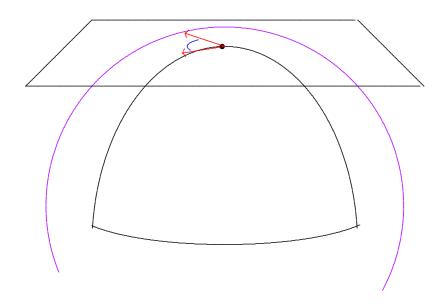
Kähler metrics:

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$



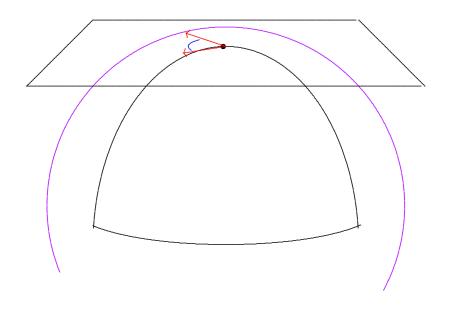
Kähler metrics:

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

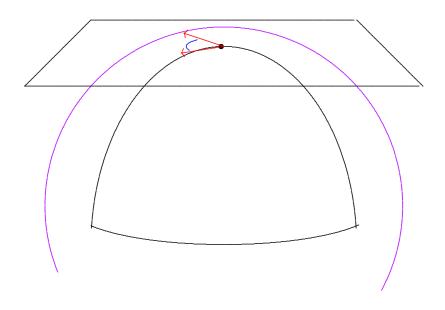


 $\mathbf{U}(m) := \mathbf{O}(2m) \cap \mathbf{GL}(m, \mathbb{C})$

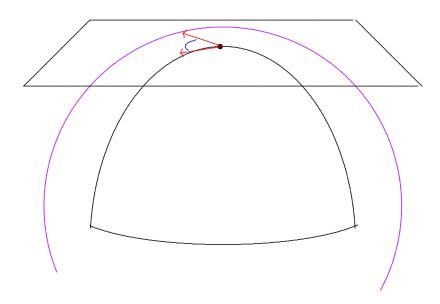
 (M^{2m}, g) : holonomy



 (M^{2m}, g) : Ricci-flat Kähler \longleftarrow holonomy $\subset \mathbf{SU}(m)$

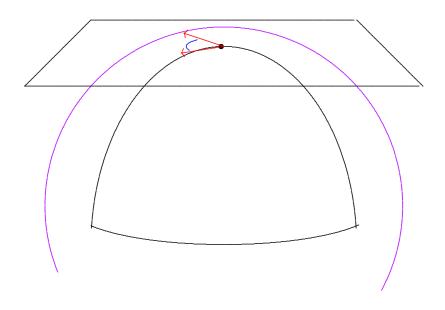


 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$

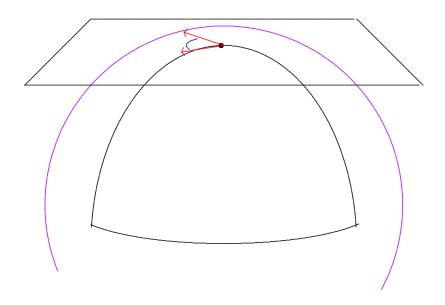


$$\mathbf{SU}(m) \subset \mathbf{U}(m) : \{A \mid \det A = 1\}$$

 (M^{2m}, g) : Ricci-flat Kähler \longleftarrow holonomy $\subset \mathbf{SU}(m)$



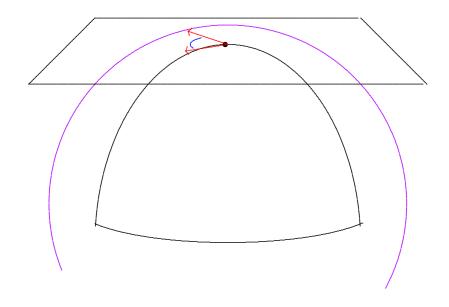
 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$



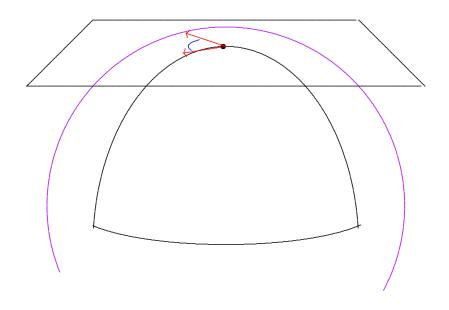
if M is simply connected.

Calabi-Yau metrics:

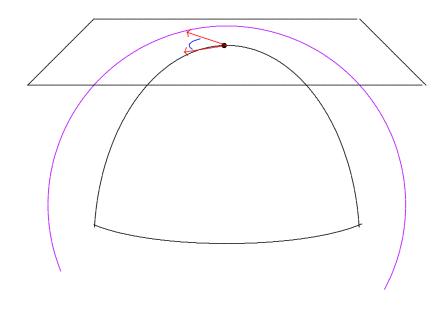
 (M^{2m}, g) : Calabi-Yau \iff holonomy $\subset \mathbf{SU}(m)$



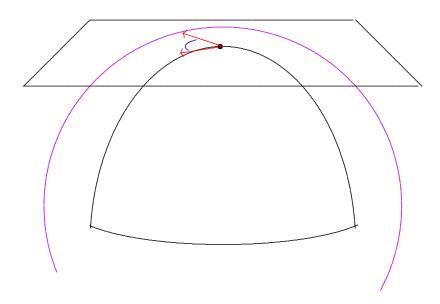
 (M^{4k}, g) holonomy



 (\mathbf{M}^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$

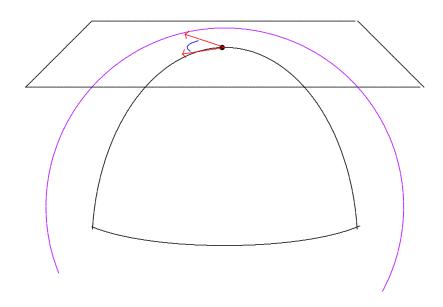


 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



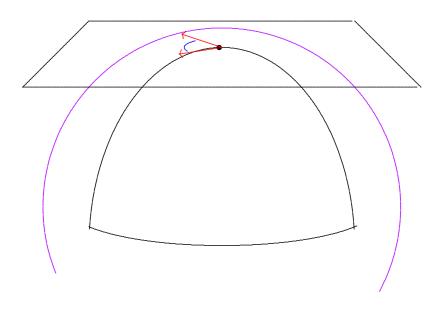
 $\mathbf{Sp}(k) := \mathbf{O}(4k) \cap \mathbf{GL}(\ell, \mathbb{H})$

 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



 $\mathbf{Sp}(k) \subset \mathbf{SU}(2k)$

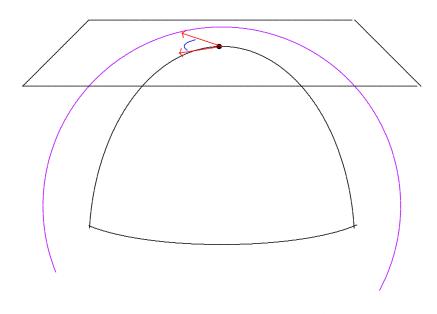
 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



$$\mathbf{Sp}(k) \subset \mathbf{SU}(2k)$$

in many ways!

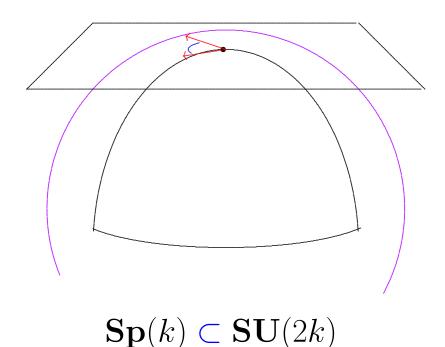
 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



 $\mathbf{Sp}(k) \subset \mathbf{SU}(2k)$

in many ways! (For example, permute i, j, k...)

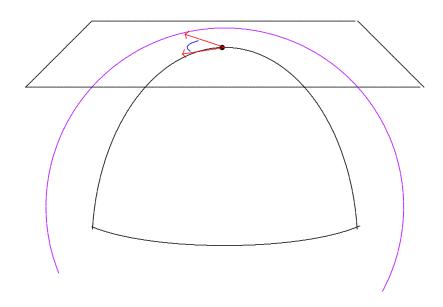
 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



Ricci-flat and Kähler,

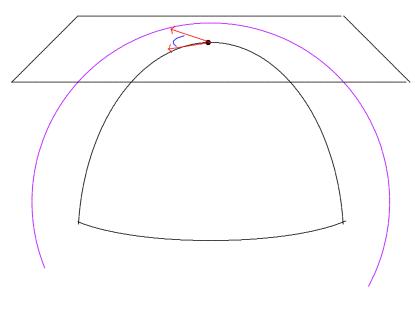
for many different complex structures!

 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



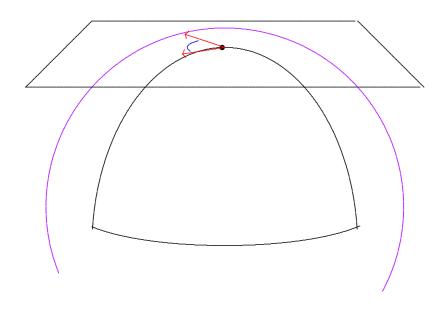
 $\mathbf{Sp}(k) \subset \mathbf{SU}(2k)$

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



$$\mathbf{Sp}(1) = \mathbf{SU}(2)$$

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$

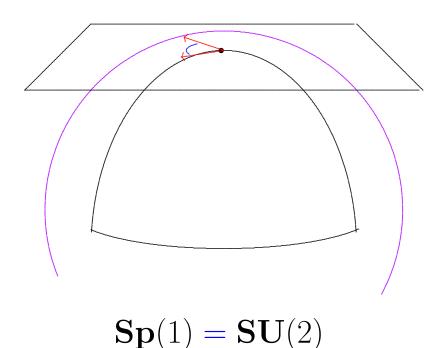


$$\mathbf{Sp}(1) = \mathbf{SU}(2)$$

For (M^4, g) :

hyper-Kähler ← Calabi-Yau.

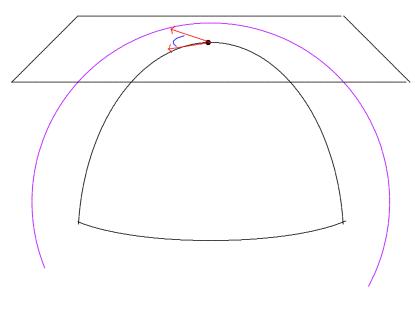
 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



When (M^4, g) simply connected:

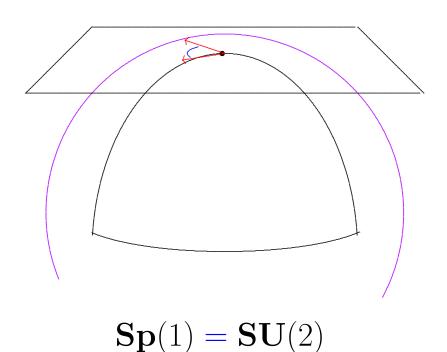
hyper-Kähler ← Ricci-flat Kähler.

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



$$\mathbf{Sp}(1) = \mathbf{SU}(2)$$

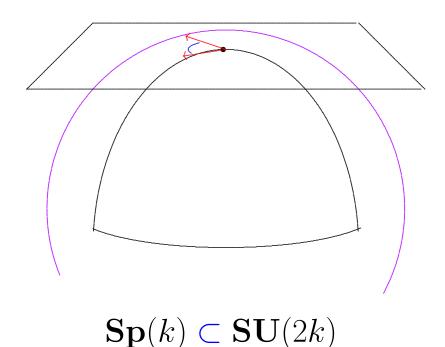
 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



Ricci-flat and Kähler,

for many different complex structures!

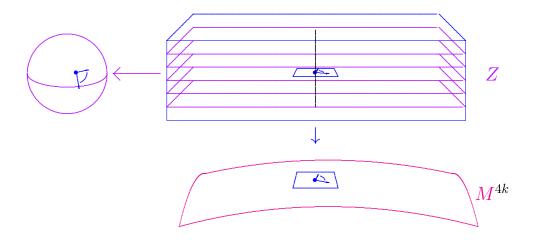
 (M^{4k}, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(k)$



Ricci-flat and Kähler,

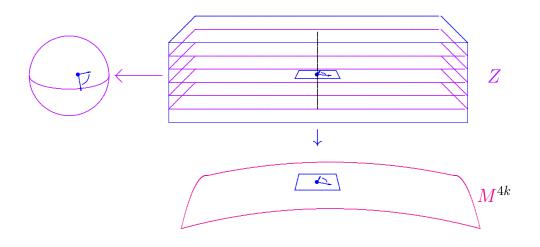
for many different complex structures!

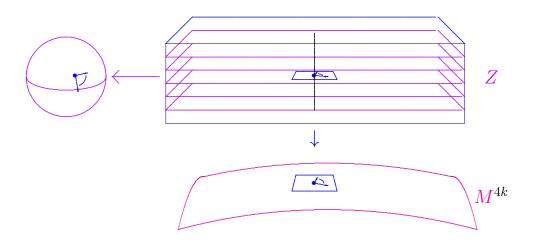
All these complex structures can be repackaged

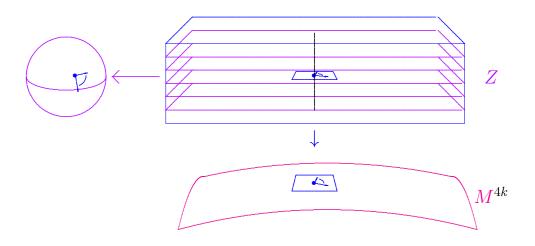


All these complex structures can be repackaged as

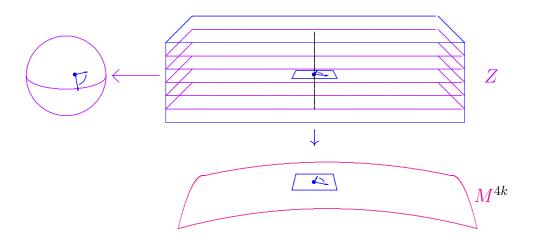
Penrose-Hitchin Twistor Space $(\mathbb{Z}^{4k+2}, \mathbb{J})$,



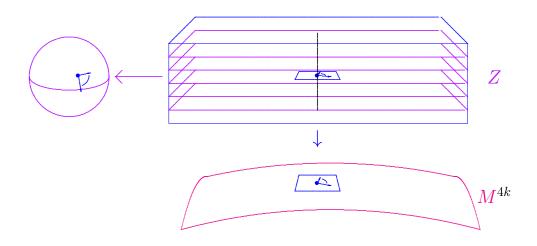




 Z^{4k+2} is diffeomorphic to $M \times S^2$.



 Z^{4k+2} is diffeomorphic to $M \times \mathbb{CP}_1$.



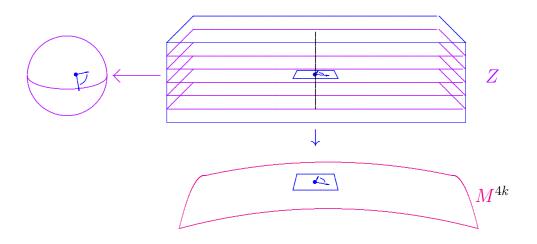
 Z^{4k+2} is diffeomorphic to $M \times \mathbb{CP}_1$.

 $\varpi: Z \to \mathbb{CP}_1$ is a holomorphic submersion.

All these complex structures can be repackaged as

Penrose-Hitchin Twistor Space (Z^{4k+2}, J) ,

which is a complex 2k + 1-manifold.



 Z^{4k+2} is diffeomorphic to $M \times \mathbb{CP}_1$.

 $\varpi: Z \to \mathbb{CP}_1$ is a holomorphic submersion.

By contrast, $\wp: Z \to M$ is not holomorphic.

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

$$\Omega = dz^1 \wedge dz^2 + \dots + dz^{2k-1} \wedge dz^{2k}$$

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

$$\Omega = dz^1 \wedge dz^2 + \dots + dz^{2k-1} \wedge dz^{2k}$$

Calabi-Yau Theorem ⇒

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

$$\Omega = dz^1 \wedge dz^2 + \cdots + dz^{2k-1} \wedge dz^{2k}$$

Calabi-Yau Theorem ⇒

 $\exists !$ Calabi-Yau metric g on (M, J) with $[\omega] = [\omega_0]$.

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

$$\Omega = dz^1 \wedge dz^2 + \dots + dz^{2k-1} \wedge dz^{2k}$$

Calabi-Yau Theorem ⇒

 \exists ! Calabi-Yau metric g on (M, J) with $[\omega] = [\omega_0]$.

Bochner's Weitzenböck argument ⇒

$$\nabla\Omega=0.$$

Let (M^{4k}, J, g_0) be a compact Kähler manifold which admits a holomorphic symplectic form

$$\Omega = dz^1 \wedge dz^2 + \cdots + dz^{2k-1} \wedge dz^{2k}$$

Calabi-Yau Theorem ⇒

 \exists ! Calabi-Yau metric g on (M, J) with $[\omega] = [\omega_0]$.

Bochner's Weitzenböck argument ⇒

$$\nabla\Omega=0.$$

 $\therefore (M, g)$ is hyper-Kähler.

$$\mathbb{T}^{4k} = \mathbb{C}^{2k}/\Lambda$$

$$\mathbb{T}^{4k} = \mathbb{C}^{2k}/\Lambda$$

$$\Lambda \cong \mathbb{Z}^{4k}$$

$$\mathbb{T}^{4k} = \mathbb{C}^{2k}/\Lambda$$

$$\Lambda \cong \mathbb{Z}^{4k}$$

$$g = |dz^1|^2 + \dots + |dz^{2k}|^2$$

$$\mathbb{T}^{4k} = \mathbb{C}^{2k}/\Lambda$$

$$\Lambda \cong \mathbb{Z}^{4k}$$

$$g = |dz^1|^2 + \dots + |dz^{2k}|^2$$

$$\Omega = dz^1 \wedge dz^2 + \dots + dz^{2k-1} \wedge dz^{2k}$$

First Non-Trivial Example:

"...et de la belle montagne K2 au Cachemire."

—André Weil, 1958

Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

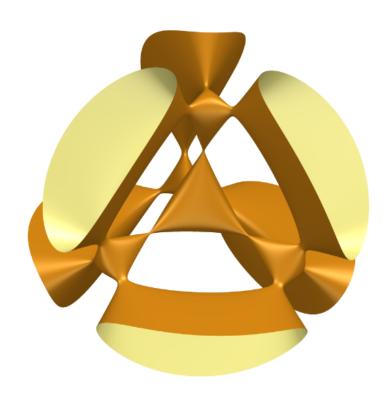
Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .

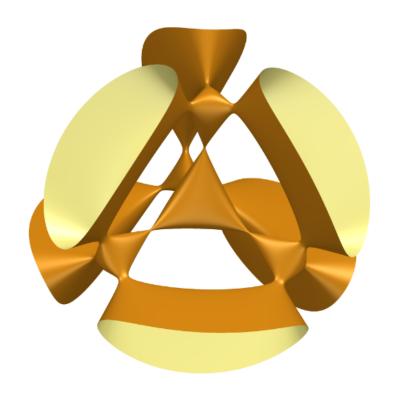
Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .



Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .



Admits hyper-Kähler Kähler metrics.

(Beauville '83), generalizing Fujiki:

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:

(Hilbert scheme of k+1 points on \mathbb{T}^4)/ \mathbb{T}^4 .

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:

(Hilbert scheme of k+1 points on \mathbb{T}^4)/ \mathbb{T}^4 .

O'Grady '99, '03: sporadic examples M^{12} and M^{20} .

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:

(Hilbert scheme of k+1 points on \mathbb{T}^4)/ \mathbb{T}^4 .

O'Grady '99, '03: sporadic examples M^{12} and M^{20} .

All a priori simply connected!

(Beauville '83), generalizing Fujiki:

 (M^{4k}, J) = Hilbert scheme of k points on K3.

Natural desingularization of $(\underbrace{K3 \times \cdots \times K3}_{k})/\mathfrak{S}_{k}$.

(Fujiki had done the k = 2 case.)

Beauville also discovered a second infinite series:

(Hilbert scheme of k+1 points on \mathbb{T}^4)/ \mathbb{T}^4 .

O'Grady '99, '03: sporadic examples M^{12} and M^{20} .

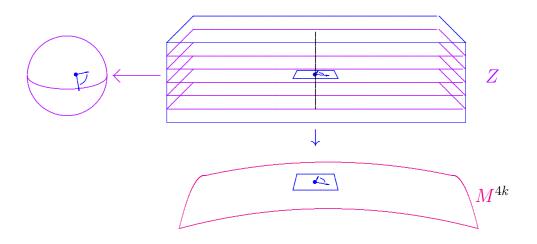
All a priori simply connected!

Multiplicativity of Todd genus + Cheeger-Gromoll.

All these complex structures can be repackaged as

Penrose-Hitchin Twistor Space (Z^{4k+2}, J) ,

which is a complex 2k + 1-manifold.



 Z^{4k+2} is diffeomorphic to $M \times \mathbb{CP}_1$.

 $\varpi: Z \to \mathbb{CP}_1$ is a holomorphic submersion.

By contrast, $\wp: Z \to M$ is not holomorphic.

All these complex structures can be repackaged as **Penrose-Hitchin Twistor Space** ($\mathbb{Z}^{4k+2}, \mathbb{J}$), which is a complex 2k+1-manifold.

 Z^{4k+2} is diffeomorphic to $M \times \mathbb{CP}_1$.

 $\varpi: Z \to \mathbb{CP}_1$ is a holomorphic submersion.





$$f([z_1, z_2]) = [P(z_1, z_2), Q(z_1, z_2)]$$

$$f([z_1, z_2]) = [P(z_1, z_2), Q(z_1, z_2)]$$

i.e. rational function $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

$$f([z_1, z_2]) = [P(z_1, z_2), Q(z_1, z_2)]$$

i.e. rational function $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

$$f(z) = \frac{P(z)}{Q(z)}$$

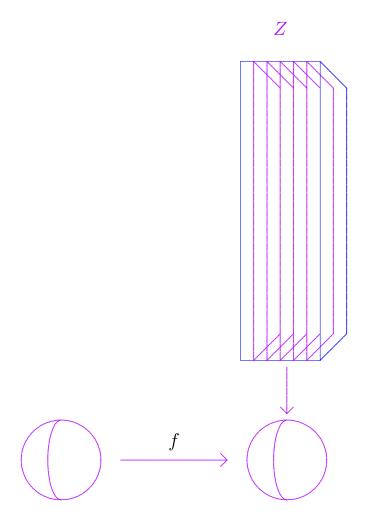
$$f([z_1, z_2]) = [P(z_1, z_2), Q(z_1, z_2)]$$

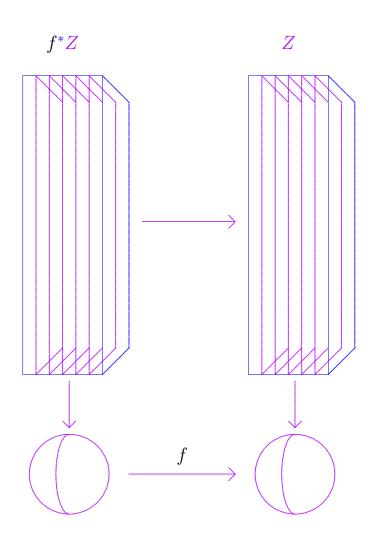
i.e. rational function $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

$$f(z) = \frac{P(z)}{Q(z)}$$

Set $\ell = \deg(f)$.







For clarity:

For clarity:

$$id \times \varpi : \mathbb{CP}_1 \times Z \to \mathbb{CP}_1 \times \mathbb{CP}_1$$

For clarity:

$$id \times \varpi : \mathbb{CP}_1 \times Z \to \mathbb{CP}_1 \times \mathbb{CP}_1$$

is a holomorphic submersion.

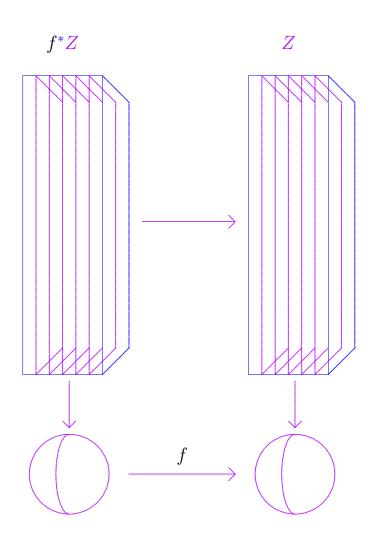
F For clarity:

$$id \times \varpi : \mathbb{CP}_1 \times Z \to \mathbb{CP}_1 \times \mathbb{CP}_1$$

is a holomorphic submersion.

Pull-back f^*Z is exactly $(\varpi \times id)^{-1}(\operatorname{graph}_f)$.





Since $Z \to \mathbb{CP}_1$ is smoothly trivial,

Since $Z \to \mathbb{CP}_1$ is smoothly trivial, so is $f^*Z \to \mathbb{CP}_1$.

Since $Z \to \mathbb{CP}_1$ is smoothly trivial, so is $f^*Z \to \mathbb{CP}_1$.

Consequently, $f^*Z \approx S^2 \times M$.

Since $Z \to \mathbb{CP}_1$ is smoothly trivial, so is $f^*Z \to \mathbb{CP}_1$.

Consequently, $f^*Z \approx S^2 \times M$.

Defines complex structure J_f on $S^2 \times M$ for every $f: \mathbb{CP}_1 \to \mathbb{CP}_1$.

Since $Z \to \mathbb{CP}_1$ is smoothly trivial, so is $f^*Z \to \mathbb{CP}_1$.

Consequently, $f^*Z \approx S^2 \times M$.

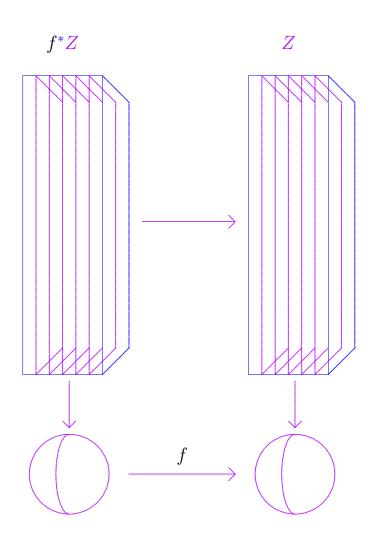
Defines complex structure J_f on $S^2 \times M$ for every $f: \mathbb{CP}_1 \to \mathbb{CP}_1$.

How different are these?

All these complex structures can be repackaged as **Penrose-Hitchin Twistor Space** (Z^{4k+2}, J) with holomorphic submersion $\varpi : Z \to \mathbb{CP}_1$.



All these complex structures can be repackaged as **Penrose-Hitchin Twistor Space** (Z^{4k+2}, J) with holomorphic submersion $\varpi : Z \to \mathbb{CP}_1$.



Let Z be its twistor space.

Let Z be its twistor space.

Theorem. Let $Crit(f) \subset \mathbb{CP}_1$ be the set of critical points of

Let Z be its twistor space.

Theorem. Let $Crit(f) \subset \mathbb{CP}_1$ be the set of critical points of

$$f: \mathbb{CP}_1 \to \mathbb{CP}_1,$$

Let Z be its twistor space.

Theorem. Let $\operatorname{Crit}(f) \subset \mathbb{CP}_1$ be the set of critical points of

$$f: \mathbb{CP}_1 \to \mathbb{CP}_1,$$

where each critical point is also labeled by its multiplicity.

Let Z be its twistor space.

Theorem. Let $Crit(f) \subset \mathbb{CP}_1$ be the set of critical points of

$$f: \mathbb{CP}_1 \to \mathbb{CP}_1,$$

where each critical point is also labeled by its multiplicity.

Then, up to Möbius transformations of \mathbb{CP}_1 , the labeled set $\mathrm{Crit}(f)$ is a complex-manifold invariant f^*Z .

Let Z be its twistor space.

Theorem. Let $Crit(f) \subset \mathbb{CP}_1$ be the set of critical points of

$$f: \mathbb{CP}_1 \to \mathbb{CP}_1,$$

where each critical point is also labeled by its multiplicity.

Then, up to Möbius transformations of \mathbb{CP}_1 , the labeled set $\mathrm{Crit}(f)$ is a complex-manifold invariant f^*Z .

In particular, if f_1^*Z and f_2^*Z are biholomorphic, then $\operatorname{Crit}(f_1)$ and $\operatorname{Crit}(f_2)$ are related by a Möbius transformation.

• \exists uniquely defined holomorphic line bundle

$$L = K^{-1/(2k\ell+2)}$$

over f^*Z , where $\ell = \deg(f)$.

• \exists uniquely defined holomorphic line bundle

$$L = K^{-1/(2k\ell+2)}$$

over f^*Z , where $\ell = \deg(f)$.

• $h^0(f^*Z, \mathcal{O}(L)) = 2.$

• \exists uniquely defined holomorphic line bundle

$$L = K^{-1/(2k\ell+2)}$$

over f^*Z , where $\ell = \deg(f)$.

- $h^0(f^*Z, \mathcal{O}(L)) = 2.$
- The holomorphic projection

$$f^*Z \to \mathbb{CP}_1$$

is given by the linear system |L|.

• \exists uniquely defined holomorphic line bundle

$$L = K^{-1/(2k\ell+2)}$$

over f^*Z , where $\ell = \deg(f)$.

- $h^0(f^*Z, \mathcal{O}(L)) = 2.$
- The holomorphic projection

$$f^*Z \to \mathbb{CP}_1$$

is given by the linear system |L|.

• Kodaira-Spencer map of the family

$$f^*Z \to \mathbb{CP}_1$$

vanishes at, and only at, Crit(f), with exactly the same multiplicities.

Let Z be its twistor space.

Theorem. Let $Crit(f) \subset \mathbb{CP}_1$ be the set of critical points of

$$f: \mathbb{CP}_1 \to \mathbb{CP}_1,$$

where each critical point is also labeled by its multiplicity.

Then, up to Möbius transformations of \mathbb{CP}_1 , the labeled set $\mathrm{Crit}(f)$ is a complex-manifold invariant f^*Z .

In particular, if f_1^*Z and f_2^*Z are biholomorphic, then $\operatorname{Crit}(f_1)$ and $\operatorname{Crit}(f_2)$ are related by a Möbius transformation.

Theorem A. The moduli space $\mathfrak{M}(M \times S^2)$ of complex structures on $M \times S^2$ is infinite-dimensional, in this following sense:

Theorem A. The moduli space $\mathfrak{M}(M \times S^2)$ of complex structures on $M \times S^2$ is infinite-dimensional, in this following sense:

For any positive integer N, there are holomorphic embeddings

$$D^N \hookrightarrow \mathfrak{M}(M \times S^2)$$

of the N-dimensional polydisk

Theorem A. The moduli space $\mathfrak{M}(M \times S^2)$ of complex structures on $M \times S^2$ is infinite-dimensional, in this following sense:

For any positive integer N, there are holomorphic embeddings

$$D^N \hookrightarrow \mathfrak{M}(M \times S^2)$$

of the N-dimensional polydisk

$$D^N := \underbrace{D \times \ldots \times D}_{N} \subset \mathbb{C}^N$$

into the moduli space.

Theorem A. The moduli space $\mathfrak{M}(M \times S^2)$ of complex structures on $M \times S^2$ is infinite-dimensional, in this following sense:

For any positive integer N, there are holomorphic embeddings

$$D^N \hookrightarrow \mathfrak{M}(M \times S^2)$$

of the N-dimensional polydisk

$$D^N := \underbrace{D \times \ldots \times D}_{N} \subset \mathbb{C}^N$$

into the moduli space.

(Can choose large families of high-degree

$$f_t: \mathbb{CP}_1 \to \mathbb{CP}_1$$

that are distinguished by $Crit(f_t)$.)

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

$$Td(\mathbf{M} \times S^2, \mathbf{J}_{\ell}) = \chi(\mathcal{O}) \to +\infty.$$

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

$$Td(\mathbf{M} \times S^2, \mathbf{J}_{\ell}) = \chi(\mathcal{O}) \to +\infty.$$

For example, on $K3 \times S^2$, one can choose a sequence of integrable complex structures such that

$$c_1c_2 \to +\infty$$

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

$$Td(\mathbf{M} \times S^2, \mathbf{J}_{\ell}) = \chi(\mathcal{O}) \to +\infty.$$

For example, on $K3 \times S^2$, one can choose a sequence of integrable complex structures such that

$$c_1c_2 \rightarrow +\infty$$

This in particular means that most of these complex structures are not of Kähler type!

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

$$Td(\mathbf{M} \times S^2, \mathbf{J}_{\ell}) = \chi(\mathbf{O}) \to +\infty.$$

For example, on $K3 \times S^2$, one can choose a sequence of integrable complex structures such that

$$c_1c_2 \rightarrow +\infty$$

This in particular means that most of these complex structures are not of Kähler type!

If Kähler, Hodge decomposition would imply

$$\chi(\mathbf{Y}) = \sum_{p} (-1)^p h^{0,p}(\mathbf{Y}) \le \sum_{j} b_{2j}(\mathbf{Y}).$$

Theorem B. There is a sequence of integrable complex structure J_{ℓ} on $M \times S^2$ for which

$$Td(\mathbf{M} \times S^2, J_{\ell}) = \chi(\mathcal{O}) \to +\infty.$$

For example, on $K3 \times S^2$, one can choose a sequence of integrable complex structures such that

$$c_1c_2 \rightarrow +\infty$$

This in particular means that most of these complex structures are not of Kähler type!

If Kähler, Hodge decomposition would imply

$$\chi(\mathbf{Y}) = \sum_{p} (-1)^p h^{0,p}(\mathbf{Y}) \le \sum_{j} b_{2j}(\mathbf{Y}). \Longrightarrow \Longleftrightarrow$$

Well, thanks for your attention!

It's a real pleasure being here!

Thanks for the invitation!

