On Four-Dimensional Einstein Manifolds Claude LeBrun Stony Brook University Mathematics Colloquium, Brown University, Sept. 27, 2023 Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$. Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $\exp: T_pM \to M$ Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M. $$d\mu_g = d\mu_{\text{Euclidean}},$$ $$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The Ricci curvature $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ given by $$v \longmapsto r(v,v).$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. "... the greatest blunder of my life!" — A. Einstein, to G. Gamow $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. As punishment ... $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s=r^j_j={\mathcal R}^{ij}{}_{ij}.$$ $$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. n=2,3: Einstein \iff constant sectional $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. n=2,3: Einstein \iff constant sectional $n \geq 4$: Einstein \Leftarrow , \Rightarrow constant sectional $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. Determined system: same number of equations as unknowns. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ### Determined system: same number of equations as unknowns. $$g_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ### Determined system: same number of equations as unknowns. $$g_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r_{jk}$$: $\frac{n(n+1)}{2}$ components. $$\mathcal{R}^{j}_{k\ell m}$$: $\frac{n^{2}(n^{2}-1)}{12}$ components. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. # Determined system: same number of equations as unknowns. Elliptic non-linear PDE after gauge fixing. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ### Determined system: same number of equations as unknowns. Elliptic non-linear PDE after gauge fixing. $$\Delta x^j = 0 \Longrightarrow r_{jk} = \frac{1}{2} \Delta g_{jk} + \ell ots.$$ Suppose M^n admits Einstein metric h. Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ... Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ... [3 of the 8 Thurston geometries.] Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ... But when $n \geq 5$, situation seems hopeless. Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ... But when $n \geq 5$, situation seems hopeless. {Einstein metrics on S^n }/ \sim is highly disconnected. Suppose M^n admits Einstein metric h. What, if anything, does h then tell us about M? Can we recognize M by looking at h? When n = 3, h has constant sectional curvature! So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ... But when $n \geq 5$, situation seems hopeless. {Einstein metrics on S^n }/ \sim is highly disconnected. When n = 4, situation is more encouraging... $$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$ Completely understood for certain 4-manifolds: $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$M =$$ $$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$M = T^4$$ Berger, $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+) \}$$ Known to be connected for certain 4-manifolds: $$M = T^4, K3,$$ Berger, Hitchin, $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$M = T^4, K_3,$$ Berger, Hitchin, $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+) \}$$ Known to be connected for certain 4-manifolds: $$M = T^4, K3,$$ Berger, Hitchin, $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma,$$ Berger, Hitchin, Besson-Courtois-Gallot, $$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$ Known to be connected for certain 4-manifolds: $$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$ Berger, Hitchin, Besson-Courtois-Gallot, L. When n=4, existence for Einstein depends delicately on smooth structure. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. Enough rigidity apparently still holds in dimension four to call this a geometrization. When n = 4, existence for Einstein depends
delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. Enough rigidity apparently still holds in dimension four to call this a geometrization. By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization. The Lie group SO(4) is not simple The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented (M^4, g) , The Lie group SO(4) is not simple: $$\mathfrak{so}(4)\cong\mathfrak{so}(3)\oplus\mathfrak{so}(3).$$ On oriented $(M^4,g),\Longrightarrow$ $$\Lambda^2=\Lambda^+\oplus\Lambda^-$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star: \Lambda^2 \to \Lambda^2,$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ Λ^+ self-dual 2-forms. Λ^- anti-self-dual 2-forms. $$\mathcal{R}:\Lambda^2\to\Lambda^2$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature}$ W_{-} = anti-self-dual Weyl curvature $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$ W_{-} = anti-self-dual Weyl curvature Thus (M^4, g) Einstein \iff $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ commutes with $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Thus (M^4, g) Einstein \iff $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ commutes with $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Thus (M^4, g) Einstein \iff $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ commutes with $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Thus (M^4, g) Einstein \iff $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ commutes with $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. $$K(P) = K(P^{\perp})$$ What's so special about dimension 4? The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ Λ^+ self-dual 2-forms. Λ^- anti-self-dual 2-forms. (M^4, ω) where ω closed non-degenerate 2-form: (M^4, ω) where ω closed non-degenerate 2-form: $$d\omega = 0, \qquad \exists \omega : TM \stackrel{\cong}{\to} T^*M.$$ (M^4, ω) where ω closed non-degenerate 2-form: $$\omega = dx \wedge dy + dz \wedge dt$$ (M^4, ω) where ω closed non-degenerate 2-form: $$\omega = dx \wedge dy + dz \wedge dt$$ Induces preferred orientation: (M^4, ω) where ω closed non-degenerate 2-form: $$\omega = dx \wedge dy + dz \wedge dt$$ Induces preferred orientation: $$\frac{\omega \wedge \omega}{2} = dx \wedge dy \wedge dz \wedge dt$$ A laboratory for exploring Einstein metrics. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. Original definition: Original definition: M can be made into a complex manifold, Original definition: *M* can be made into a complex manifold, in such a manner that, locally, Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Associated Kähler form: $$\omega = i \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} dz^j \wedge d\bar{z}^k$$ Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Modern definition: Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Modern definition: (M^{2m}, g) has holonomy $\subset \mathbf{U}(m)$. (M^n, g) : holonomy $\subset \mathbf{O}(n)$ # Kähler metrics: (M^{2m}, g) : holonomy #### Kähler metrics: (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$ #### Kähler metrics: $$(M^{2m}, g)$$ Kähler \iff holonomy $\subset \mathbf{U}(m)$ $\mathbf{U}(m) := \mathbf{O}(2m) \cap \mathbf{GL}(m, \mathbb{C})$ A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Some Suggestive Questions. A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)? A laboratory for exploring Einstein metrics. Kähler geometry is a rich source of examples. If M admits a Kähler metric, it of course admits a symplectic form ω . On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics. Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (unrelated to ω)? What if we also require $\lambda \geq 0$? **Theorem** (L '09). **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . **Theorem** (L '09). Suppose that M is a
smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g ``` M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \overline{\mathbb{CP}} ``` $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 . ``` M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \overline{\mathbb{CP}} ``` ``` M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right. ``` ``` \begin{array}{c} \text{ ... anifol} \\ \text{ ... are } \omega. \text{ Then } 1 \\ \text{ ... iric } g \text{ with } \lambda \geq 0 \text{ if } \epsilon. \\ \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \\ \\ M \overset{diff}{\approx} \end{array} ``` —André Weil, 1958 Simply connected complex surface with $c_1 = 0$. Simply connected complex surface with $c_1 = 0$. Only one deformation type. Simply connected complex surface with $c_1 = 0$. Only one diffeomorphism type. Simply connected complex surface with $c_1 = 0$. Simply connected complex surface with $c_1 = 0$. Typical model: Smooth quartic in \mathbb{CP}_3 . Simply connected complex surface with $c_1 = 0$. Typical model: Smooth quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . T^4 = Picard torus of curve of genus 2. Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Generic quartic is a K3 surface. Simply connected complex surface with $c_1 = 0$. Typical model: Smooth quartic in \mathbb{CP}_3 . Simply connected complex surface with $c_1 = 0$. Typical model: Smooth quartic in \mathbb{CP}_3 . Calabi/Yau: Admits Ricci-flat Kähler metrics. Theorem (L 09). Suppose that $$M$$ is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$, Theorem (L 09). Suppose that $$M$$ is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and o $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \end{cases}$$ $$M \stackrel{diff}{\approx} \left\{ \begin{array}{l} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{array} \right.$$ ``` mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases} ``` Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Del Pezzo surfaces, Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Del Pezzo surfaces, K3 surface, Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces. ``` mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases} ``` Einstein metric $$g$$ with $\chi \geq 0$ if and only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. No others: Hitchin-Thorpe, Seiberg-Witten, ... ``` mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases} ``` Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Extensive results in $\lambda < 0$ case, too. Einstein metric $$g$$ with $\lambda \geq 0$ if and only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Extensive results in $\lambda < 0$ case, too. But that would be a topic for a different lecture! **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if ``` mattern metric g when X = \mathbb{Z} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, & T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases} ``` ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ## Definitive list
... ``` \mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ Below the line: $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$ $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ completely understood. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Know an Einstein metric on each manifold. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected? $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ ## Below the line: Every Einstein metric is Ricci-flat Kähler. (M^4, J) for which c_1 is a Kähler class $[\omega]$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. If N is a complex surface, If N is a complex surface, may replace $p \in N$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, no 8 on nodal cubic. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally $K\ddot{a}hler$, $(M^4,
J)$ for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique up to complex automorphisms and constant rescalings. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Conformally Kähler: $$g = u^2 h$$ \exists some Kähler metric h & some smooth function u. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Conformally Kähler: $$g = u^2 h$$ where Kähler metric h is extremal & $u = s_h^{-1}$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, Chen-L-Weber. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Uniqueness: Bando-Mabuchi '87 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Uniqueness: Bando-Mabuchi '87, L '12. #### Above the line: Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected? $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ connected! Understand all Einstein metrics on del Pezzos. Understand all Einstein metrics on del Pezzos. Is Einstein moduli space connected? Understand all Einstein metrics on del Pezzos. Is Einstein moduli space connected? ## Progress to date: Nice characterizations of known Einstein metrics. Understand all Einstein metrics on del Pezzos. Is Einstein moduli space connected? ## Progress to date: Nice characterizations of known Einstein metrics. Exactly one connected component of moduli space! **Theorem** (L '15). **Theorem** (L '15). On any del Pezzo M^4 , **Theorem** (L '15). On any del Pezzo M^4 , the conformally Kähler, Einstein metrics $$W^+(\omega,\omega) > 0$$ $$W^+(\omega,\omega) > 0$$ everywhere on M, $$W^+(\omega,\omega) > 0$$ everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form. $$W^+(\omega,\omega) > 0$$ everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form. Corollary. These known Einstein metrics on any del Pezzo M⁴ **Theorem** (L '15). On any del Pezzo M^4 , the conformally Kähler, Einstein metrics are exactly characterized by the property that $$W^+(\omega,\omega) > 0$$ everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form. Corollary. These known Einstein metrics on any del Pezzo M^4 sweep out exactly one connected component **Theorem** (L '15). On any del Pezzo M^4 , the conformally Kähler, Einstein metrics are exactly characterized by the property that $$W^+(\omega,\omega) > 0$$ everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form. Corollary. These known Einstein metrics on any del Pezzo M^4 sweep out exactly one connected component of the Einstein moduli space $\mathcal{E}(M)$. But $W^+(\omega, \omega) > 0$ is not purely local condition! But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . Peng Wu proposed an alternate characterization But $W^+(\omega, \omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Kähler $$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$ $$W^+ = \text{trace-free part of} \begin{bmatrix} 0 \\ 0 \\ \frac{s}{4} \end{bmatrix}$$ But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Kähler $$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$ $$W^{+} = \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix}$$ But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Kähler $$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$ $$\det(W^{+}) = \det \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix} = \frac{s^{3}}{864} > 0$$ for these metrics But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using
only a purely local condition on W^+ . Kähler $$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$ $$\det(W^{+}) = \det \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix} = \frac{s^{3}}{864} > 0$$ for these metrics & conformal rescalings: $$g \rightsquigarrow \mathbf{h} = u^2 g \implies \det(W^+) \rightsquigarrow u^{-6} \det(W^+).$$ But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Wu's criterion: $$\det(W^+) > 0.$$ But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Wu's criterion: $$\det(W^+) > 0.$$ Wu (2021): terse, opaque proof that \iff . But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Wu's criterion: $$\det(W^+) > 0.$$ Wu (2021): terse, opaque proof that \iff . L (2021a): completely different proof; But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Wu's criterion: $$\det(W^+) > 0.$$ Wu (2021): terse, opaque proof that \iff . L (2021a): completely different proof; method also proves more general results. But $W^+(\omega,\omega) > 0$ is not purely local condition! Involves global harmonic 2-form ω . **Peng Wu** proposed an alternate characterization using only a purely local condition on W^+ . Wu's criterion: $$\det(W^+) > 0.$$ Wu (2021): terse, opaque proof that \iff . L (2021a): completely different proof. L (2021b): related classification result. Theorem (L/Wu '21). **Theorem** (L/Wu '21). Let (M, g) be a compact oriented Einstein 4-manifold, Theorem (L/Wu '21). Let (M, g) be a simply-connected compact oriented Einstein 4-manifold, $W^+:\Lambda^+\to\Lambda^+$ $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Corollary. Every simply-connected compact oriented Einstein (M^4, g) with $det(W^+) > 0$ is diffeomorphic to a del Pezzo surface. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Corollary. Every simply-connected compact oriented Einstein (M^4, g) with $\det(W^+) > 0$ is diffeomorphic to a del Pezzo surface. Conversely, every del Pezzo M^4 carries Einstein g with $\det(W^+) > 0$, $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Corollary. Every simply-connected compact oriented Einstein (M^4, g) with $\det(W^+) > 0$ is diffeomorphic to a del Pezzo surface. Conversely, every del Pezzo M^4 carries Einstein g with $\det(W^+) > 0$, and these sweep out exactly one connected component of moduli space $\mathscr{E}(M)$. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Simply connected hypothesis $\iff b_{+}(M) \neq 0$. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Simply connected hypothesis $\iff b_+(M) \neq 0$. Excludes 5 types with $\pi_1 = \mathbb{Z}_2$ and $b_+(M) = 0$. $$W^+:\Lambda^+\to\Lambda^+$$ satisfies $$\det(W^+) > 0$$ at every point of M. Then g is conformal to an orientation-compatible extremal Kähler metric h with scalar curvature s > 0 on M. Simply connected hypothesis $\iff b_+(M) \neq 0$. Excludes 5 types with $\pi_1 = \mathbb{Z}_2$ and $b_+(M) = 0$. Similar results govern moduli spaces in these cases. Odaka-Spotti-Sun completely classified the $\lambda > 0$ Kähler-Einstein orbifolds (X^4, g_{∞}) that can arise as Gromov-Hausdorff limits of sequences of smooth Kähler-Einstein manifolds (M^4, g_j) . Odaka-Spotti-Sun completely classified the $\lambda > 0$ Kähler-Einstein orbifolds (X^4, g_{∞}) that can arise as Gromov-Hausdorff limits of sequences of smooth Kähler-Einstein manifolds (M^4, g_j) . Most positive K-E 4-orbifolds don't arise this way! Odaka-Spotti-Sun completely classified the $\lambda > 0$ Kähler-Einstein orbifolds (X^4, g_{∞}) that can arise as Gromov-Hausdorff limits of sequences of smooth Kähler-Einstein manifolds (M^4, g_j) . Most positive K-E 4-orbifolds don't arise this way! Forthcoming paper with Tristan Ozuch: Odaka-Spotti-Sun completely classified the $\lambda > 0$ Kähler-Einstein orbifolds (X^4, g_{∞}) that can arise as Gromov-Hausdorff limits of sequences of smooth Kähler-Einstein manifolds (M^4, g_j) . Most positive K-E 4-orbifolds don't arise this way! Forthcoming paper with Tristan Ozuch: Obtain the same conclusion, without assuming that the Einstein manifolds (M^4, g_j) are Kähler. Odaka-Spotti-Sun completely classified the $\lambda > 0$ Kähler-Einstein orbifolds (X^4, g_{∞}) that can arise as Gromov-Hausdorff limits of sequences of smooth Kähler-Einstein manifolds (M^4, g_j) . Most positive K-E 4-orbifolds don't arise this way! Forthcoming paper with Tristan Ozuch: Obtain the same conclusion, without assuming that the Einstein manifolds (M^4, g_j) are Kähler. Proof once again based on Wu's criterion. ## Thanks for the invitation! # It's a pleasure to be here! ## Supplementary material: The $\lambda < 0$ case. **Theorem.** Let M be the 4-manifold underlying a compact complex surface. Suppose that M an Einstein metric g. Then either M appears on list for $\lambda \geq 0$, or else M is a surface of general type, and is not too non-minimal, in the sense that it is obtained from its minimal model X by blowing up at $k < c_1^2(X)/3$ points. **Example.** Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic: Aubin/Yau $\Longrightarrow N$ carries Einstein metric. Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic and set $$M = X \# \overline{\mathbb{CP}}_2.$$ Then $$\alpha^2(M) = c_1^2(X) = 3$$, $$(2\chi + 3\tau)(M) = c_1^2(M) = 2.$$ Theorem $?? \implies no$ Einstein metric on M.