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Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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Moduli Spaces of Einstein metrics

& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Induces preferred orientation:

W N\ w
2

=dx Ndy Ndz N\ dt
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(M?™, g) Kéhler <= holonomy C U(m)

U(m) = 0(2m) N GL(m,C)
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an
Finstein metric g (unrelated to w)? What if we
also require A > 07
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéhler metrics.
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Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Kahler = AT = Rw @ ReA2V
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2021): terse, opaque proof that <.
I (2021a): completely different proof.

L. (2021b): related classification result.
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Theorem (L./Wu "21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0

at every point of M. Then g is conformal to an
orientation-compatible extremal Kahler metric h
with scalar curvature s > 0 on M.

Simply connected hypothesis <= by (M) # 0.

Excludes 5 types with my = Zg and b4 (M) = 0.

Similar results govern moduli spaces in these cases.
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Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise

as Gromov-Hausdorff limits of sequences of smooth
Kéhler-Einstein manifolds (M?, g;)-

Most positive K-E 4-orbifolds don’t arise this way!
Forthcoming paper with Tristan Ozuch:

Obtain the same conclusion, without assuming that
the Einstein manifolds (M, gj) are Kahler.

Proot once again based on Wu's criterion.



Thanks for the invitation!



It’s a pleasure to be here!










Supplementary material:

The A < 0 case.



Theorem. Let M be the 4-manifold underlying
a compact complex surface. Suppose that M an
Einstein metric g. Then either M appears on
list for A > 0, or else M 1is a surface of general
type, and is not too non-minimal, in the sense
that it is obtained from its minimal model X by
blowing up at k < ¢1>(X)/3 points.



Example. Let N be double branched cover CIPs,
ramified at a smooth octic:

m
B/

Aubin/Yau = N carries Einstein metric.

B

CP,




Now let X be a triple cyclic cover CIPy, ramified at
a smooth sextic

nEEe=

CP,

and set -
M = X#CP».

Then o?(M) = ¢§(X) = 3,
(2x + 37)(M) = c3(M) = 2.

Theorem 77 — no Einstein metric on M.



