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Variational Problem:

If M smooth compact n-manifold, n > 3,
G s = { smooth metrics g on M}

then Einstein metrics are critical points of the scale-
invariant action functional

QM%R

QH/ 59" 2dp1g
M

Conversely:
Critical points are Einstein or scalar-flat (s=0).

Try to find Einstein metrics by minimizing?
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A Differential-Topological Invariant:

700 = [ sy,
9 JM

Theorem. Let M be a compact simply connected
n-manifold, n > 3. If n # 4, Ts(M) = 0.

Theorem. There exist compact simply connected
4-manifolds M ; with Ts(M ;) — +o0.

Moreover, can choose M ; such that

7.0) = inf [ sy
9 Ju;

18 realized by an Einstein metric g; with A < 0.
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Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s0(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

More Modest Question. If (M4, ) is a com-
pact complex surface, when does M Y admit an
FEinstein metric g (unrelated to .J)?¢
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Theorem. A compact complex surface (M?,.])
admits an Einstein metric g which is Hermitian
with respect to J <= c¢{(M*,.J) “has a sign.”

More precisely, 3 such g with Einstein constant
A <= there i1s a Kahler form w such that

el (M*,J) = Aw.

Moreover, this metric 1s unique, up to isometry,

if A =£ 0.
Aubin, Yau, Siu, Tian ... Kahler case.

Chen-L-Weber (2008), L (2013): non-IKahler case.

Only two metrics arise in non-Kahler case!
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Proposition. Let (M*,.]) be a compact complex
surface, and suppose that g is an Einstein metric
on M which 1s Hermitian with respect to J:

g(J-,J:) = g.
Then (M*,g,.J) is conformally Kihler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!
Calabi-Eckmann complex structure .JJ on 52 x 5.
Product metric is Einstein and Hermitian.

But S x S° has no Kahler metric because H? = 0.
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But also natural and interesting to consider

9
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However, these are not independent!
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Euler characteristic

o= | I
X =gz [l T -7

Signature

w0 =5 [ (W= 1)

1272
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Einstein metrics are critical for both!

Natural Question. When does Einstein metric
g on 4-manaifold M minimize one or both of these
functionals?
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Thus any quadratic curvature functional expressible
in terms of e.g.

/SQd/Lg and /\W+|2d,ug.
M M

Note that [ M]W+\2dug is conformally invariant:

unchanged by g~~u2g.
By contrast, [ MSQd,LLg varies on any conformal class.
Critical in |g] <= s = constant.

Minimizer in [g] <= ¢ is “Yamabe metric.”
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Theorem (L '95). If smooth compact M* admits
Kahler-Einstein metric g with A <0, then g 1s
absolute minimizer of fM s2du among all Rie-
mannian metrics on M. Moreover, any metric
g on M satisfies

/ s2dp > 3212 (2x + 37)(M),
M

with equality iff g is Kahler-Einstein, with A < 0.

Proof depends on Seiberg-Witten equations
Da® =0

1 .
+

Non-linear version of Dirac equation,

only defined in dimension 4.
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/ W[y >
M

with equality iff |g] contains Kdahler-FEinstein g,
with A > 0.

e

; (2x + 37) (M),

Natural Questions.

e What about Hermaitian Einstein metrics?
e What about |g| with Y (|g]) <02
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Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.

CP,
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plex structure J. Then M also admits an (un-
related) Finstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M~ or
S2 % G2

Diffeotypes: Del Pezzo surfaces.

Proof: Seiberg-Witten & Hitchin-Thorpe ineq.
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Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which admats a sym-
plectic form w. Then M also admits an (unre-
lated) Finstein metric g with A > 0
CPy#kCP>, 0<k <S8,
— M= or
S% x §?

Proot also uses results of Taubes, McDuft, et al.
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Theorem (L '12). Let g be Einstein, Hermitian
metric on be a Del Pezzo surface (M*,.J). Then

9] minimizes [, W [2dp among all conformally
Kdhler metrics on (M?,J).

Hard case: when M 1s toric.

Must understand critical points ot

C1 - |W 2
A = A+ Sl

where F is Futaki invariant.
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(M Del Pezzo)



The non-trivial cases are toric, and the action A
can be directly computed from moment polygon.
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The non-trivial cases are toric, and the action A
can be directly computed from moment polygon.
Formula involves barycenters, moments of inertia.

L2

L1




A is explicit rational function —



A is explicit rational function —
but quite complicated!



3[3+28v+967% +1687% + 1647* + 8075 +167% +168% (1 + 1) +1608 (14 8+ )% +168% 5+ 247 + 4347 +377% + 15+ +29%) + 45% (41 + 2287 + 478+ +496+% + 2634 +

60~° +445) + 883 (21 + 135~ + 32672 + 392~2 + 248~ + 74~5 + 84%) 4 48(7 + 58~ + 176~2 + 27073 + 228v% + 96~ + 167%) + 482 (24 + 176~ + 47972 + 652~° + a784% +

1727° + 244%) 4160 (5 + 28° + 24+ + 4342 + 373 + 157% + 245 4+ 81 (15 + 144) + 8337 + 707 + 30+2) + 82 (43 + 123~ + 10872 + 307%) + B(24 + 92~ + 123+2 4+ 70~% +

147%)) +aat (a1 + 485 4228~ +478~2 +496~2 +263v% +60~5 +4+5 1 8560+ 56+) + 8% (263 + 476~ + 19672) + 883 (62 + 169~ + 139~ 2 +35~+3) + 282 (239 + 876~ + 1089~ 2 +

556~° + 98+%) 4 48(57 + 263~ + 43872 + 33843 + 11972 + 14~5)) 483 (21 + 135+ + 32642 +392~3 + 248+% + 74+% 4840 £ 880 (1 + +) + 285 (37 + 70y +30~2) +45% (62 +

169~ + 139~2 +35~73) 4+ 48° (98 + 353~ + 428~2 + 210~° +357%) + 282 (163 + 735+ + 1179~2 + 856~° + 278~v% +307°) + B(135 + 736~ + 147072 + 1412~2 4+ 676~7% + 140~° +

8+0)) 4 4a(7 + 58~ + 17642 + 27072 + 228v% 1 964% + 16~8 £ 1680 (1 + +)% + 48% (24 + 924 +123~2 + 7043 + 144%) 1 454 (57 + 263~ + 43872 1+ 338~3 1 119+% £ 1445) ¢

233 (135 + 736~ + 147072 + 1412~° + 6764? + 140+° +8~0) + 482 (44 + 278~ + 645+2 + 735~° + 43874 + 1234° 4+ 12~45) 1 25(20 + 210~ + 556~2 + 736~° 4 526~7% + 18445 +

24+9)) 4 402 (24 + 176+ + 479+2 + 65273 + 478~ 117275 + 2446 1 248%(1 £ )2 1 48% (43 + 123~ + 108~2 + 3043) + 254 (239 + 876~ + 1089~2 + 556+° +98+%) +45°% (163 +

735~ + 1179+2 + 856~° + 278v% + 307%) + 48(44 + 278~ + 645~2 + 735> + 438+ + 12345 + 12+0) + 52 (479 + 2580~ + 505872 + 4716~° + 217842 + 43245 + 24«/6))]/

[1 410~ + 3672 + 6473 4+ 607% £ 2445 +248%(1 + )% + 2405 (1 £ 8+ )0 £ 12841 + )25 + 207 + 2372 £ 10+3) + 1683 (4 + 28+ + 7272 + 90~° £ 574% 1 1545) +

1282 (3 + 24~ + 6942 + 9672 + 6871 + 207°) + 28(5 + 457 + 14472 4 224~3 4 1804 +607°) + 120 (1 4+ 8 + )2 (5 + 207 + 2342 + 107° +108% (1 + ) + B2 (23 + 46+ +

16~2) 4+ 28(10 + 30~ + 23~2 4+ 572)) + 16a° (4 + 28~ + 7272 + 90> + 577* £ 154° + 1589 (1 + 7)2 + 38%(19 + 57+ + 5072 + 13+2) + 383 (30 + 120~ + 15542 + 78+° +

a4 232 2 e 3 L raad L 5D . 260~2 1 260~ 4 56,5 2, a2 -3 aead 5 5 3
13v7) +3B7(24 + 120y + 206y~ + 15547 4 50y~ + 5v°) + B(28 + 168~ 4 360+~ + 3607~ + 171+~ 4+ 30~v7)) + 12a” (3 4+ 24~ + 69y~ + 96~+° + 68y~ + 207~ + 208" (1 +~v)° +

8468 + 272+ + 36672 + 20072 + 36+%) + 483 (24 4 120~ + 206~2 + 1552 + 507% + 54°%) + 28(12 + 84~ + 20742 + 24047 + 1364% + 30~°) + B2 (69 + 414~ + 86442 +

824~3 + 366~ + 607%)) + 2a(5 + 45+ + 14442 + 22443 + 180~ + 607° + 608 (1 + )% + 128%(15 + 75~ + 1362 + 114~° + 4342 + 5+5) + 1282 (12 + 84~ + 2072 +

240~ + 13674 + 307%) + 885 (28 + 168~ + 360~72 + 360~° + 1714% + 30~°) + 38(15 + 120~ + 336~2 + 448~> + 300~% + 8075))}
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To put in Riemannian context, introduce

Definition. Let M be smooth 4-manifold with
by (M) =1, and let |g] be conformal class. We
will say that |g| is of symplectic type if non-
trivial self-dual harmonic form w 1s non-zero at
every point of M.

e open condition;
e holds in Kahler case;

e most such classes have Y ([g]) < 0.
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Theorem A. Let M be the underlying 4-manifold
of a del Pezzo surface. Then any conformal class
g of symplectic type on M satisfies

4 (cy - [w])?
/M‘WHQCZ,‘LZ 3 [w]g ;

with equality iff |g] contains a Kdhler metric g
of constant scalar curvature.

For proof, see arXiv:1310.0848 [math.DG]
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Theorem B. Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then

any conformal class |g] of symplectic type on M
satisfies

[ i
M

with equality iff |g] contains a Kdhler-Finstein
metric q.

e

o (2x 4 37)(M),

This recovers Gursky’s inequality — but for a dif-
ferent open set of conformal classes!
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Theorem C. Let M be the underlying 4-manaifold
of a toric del Pezzo surface, and let g be Ein-
stein, Hermaitian metric on M which is invari-
ant under fized torus action. Then the confor-
mal class [g] minimizes [, W |%d)e among sym-
plectic conformal classes which are invariant
under the torus action. Moreover, up to diffeo-
morphism, |g] is the unique such minimizer.

Key inequality:

71.2
[ > A
M

with equality only if [§] contains extremal Kéhler
metrics.
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Conjecture. If M* admits an Einstein, Her-
mitian metric g with A > 0, then [g] minimizes
I W |2dp among all conformal classes on M.

Even Kahler-Einstein cases would require new ideas.

Nearly symplectic structures?

Non-Kahler cases: eliminate toric condition?



