Einstein Metrics,

Curvature Functionals, and

Conformally Kähler Geometry

Claude LeBrun Stony Brook University

Joint Meeting, Baltimore January 15, 2014

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$

If M smooth compact n-manifold,

If M smooth compact n-manifold, $n \geq 3$,

If M smooth compact n-manifold, $n \geq 3$, $\mathcal{G}_{M} = \{ \text{ smooth metrics } g \text{ on } M \}$

If M smooth compact n-manifold, $n \geq 3$,

 $\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$

then Einstein metrics are critical points

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

$$\mathcal{G}_M \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_M |s_g|^{n/2} d\mu_g$$

Conversely:

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Conversely:

Critical points are Einstein

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Conversely:

Critical points are Einstein or scalar-flat ($s\equiv 0$).

If M smooth compact n-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{ smooth metrics } g \text{ on } M \}$$

then Einstein metrics are critical points of the scaleinvariant action functional

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Conversely:

Critical points are Einstein or scalar-flat ($s\equiv 0$).

Try to find Einstein metrics by minimizing?

$$\int_M |s_g|^{n/2} d\mu_g$$

$$\inf_g \int_M |s_g|^{n/2} d\mu_g$$

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold,

$$\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$.

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$,

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

Theorem. There exist compact simply connected 4-manifolds M_j

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

Theorem. There exist compact simply connected 4-manifolds M_j with $\mathcal{I}_s(M_j) \to +\infty$.

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

Theorem. There exist compact simply connected 4-manifolds M_j with $\mathcal{I}_s(M_j) \to +\infty$.

Moreover, can choose M_j

$$\mathcal{I}_s(M) = \inf_g \int_M |s_g|^{n/2} d\mu_g$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

Theorem. There exist compact simply connected 4-manifolds M_j with $\mathcal{I}_s(M_j) \to +\infty$.

Moreover, can choose M_j such that

$$\mathcal{I}_s(M_j) = \inf_g \int_{M_j} |s_g|^2 d\mu_g$$

$$\mathcal{I}_{s}(M) = \inf_{g} \int_{M} |s_{g}|^{n/2} d\mu_{g}$$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{I}_s(M) = 0$.

Theorem. There exist compact simply connected 4-manifolds M_j with $\mathcal{I}_s(M_j) \to +\infty$.

Moreover, can choose M_j such that

$$\mathcal{I}_{s}(M_{j}) = \inf_{g} \int_{M_{j}} |s_{g}|^{2} d\mu_{g}$$

is realized by an Einstein metric g_j with $\lambda < 0$.

The Lie group SO(4) is not simple:

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow
 $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$
On oriented $(M^4, g), \Longrightarrow$

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
where Λ^{\pm} are (± 1) -eigenspaces of $\star : \Lambda^2 \to \Lambda^2,$

$$\star^2 = 1.$$

Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

Complex geometry is rich source of examples.

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

More Modest Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian,

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

Kähler if the 2-form

$$\omega = g(J \cdot, \cdot)$$

is closed:

$$d\omega = 0.$$

But we do not assume this!

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that $c_1(M^4, J) = \lambda[\omega].$

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

Chen-L-Weber (2008), L (2013): non-Kähler case.

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

Chen-L-Weber (2008), L (2013): non-Kähler case.

Only two metrics arise in non-Kähler case!

$$g(J\cdot,J\cdot)=g.$$

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

In other words,

$$g = f\tilde{g}$$

 \exists Kähler metric \tilde{g} , smooth function $f: M \to \mathbb{R}^+$.

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

$$g(J\cdot, J\cdot) = g.$$

Then (M^4, g, J) is conformally Kähler!

Strictly four-dimensional phenomenon.

Wildly false in higher dimensions!

Calabi-Eckmann complex structure J on $S^3 \times S^3$.

Product metric is Einstein and Hermitian.

But $S^3 \times S^3$ has no Kähler metric because $H^2 = 0$.

We've seen that it is interesting to consider

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{2} d\mu_{g}$$

for metrics on M^4 .

We've seen that it is interesting to consider

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} |s_{g}|^{2} d\mu_{g}$$

for metrics on M^4 .

But also natural and interesting to consider

$$g \longmapsto \int_{M} |\mathbf{r}|_{g}^{2} d\mu_{g}$$

or

$$g \longmapsto \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$

Four Basic Quadratic Curvature Functionals

Four Basic Quadratic Curvature Functionals

$$\mathcal{G}_{M} \longrightarrow \mathbb{R}$$

$$\begin{cases}
\int_{M} s^{2} d\mu_{g} \\
\int_{M} |\mathring{r}|^{2} d\mu_{g} \\
\int_{M} |W_{+}|^{2} d\mu_{g} \\
\int_{M} |W_{-}|^{2} d\mu_{g}
\end{cases}$$

Four Basic Quadratic Curvature Functionals

$$g \longmapsto \begin{cases} \int_{M} s^2 d\mu_g \\ \int_{M} |\mathring{r}|^2 d\mu_g \\ \int_{M} |W_{+}|^2 d\mu_g \\ \int_{M} |W_{-}|^2 d\mu_g \end{cases}$$

However, these are not independent!

For (M^4, g) compact oriented Riemannian,

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

In Kähler case:

$$\int_{M} \frac{s^2}{24} d\mu_g = \int_{M} |W_{+}|^2 d\mu_g .$$

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

In Kähler case:

$$\int_{M} \frac{s^2}{24} d\mu_g = \int_{M} |W_{+}|^2 d\mu_g .$$

But independent for general Riemannian metrics.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Einstein metrics are critical for both!

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Einstein metrics are critical for both!

 \therefore Einstein metrics critical \forall quadratic functionals!

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Einstein metrics are critical for both!

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Einstein metrics are critical for both!

Natural Question. When does Einstein metric g on 4-manifold M minimize one or both of these functionals?

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Note that $\int_M |W_+|^2 d\mu_g$ is conformally invariant:

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Note that $\int_M |W_+|^2 d\mu_g$ is conformally invariant: unchanged by $g \leadsto u^2 g$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Note that $\int_M |W_+|^2 d\mu_g$ is conformally invariant: unchanged by $g \leadsto u^2 g$.

By contrast, $\int_{M} s^2 d\mu_g$ varies on any conformal class.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Note that $\int_M |W_+|^2 d\mu_g$ is conformally invariant: unchanged by $g \leadsto u^2 g$.

By contrast, $\int_{M} s^2 d\mu_g$ varies on any conformal class.

Critical in $[g] \iff s = \text{constant}$.

$$\int_{M} s^2 d\mu_g$$
 and $\int_{M} |W_+|^2 d\mu_g$.

Note that $\int_M |W_+|^2 d\mu_g$ is conformally invariant: unchanged by $g \leadsto u^2 g$.

By contrast, $\int_{M} s^2 d\mu_g$ varies on any conformal class.

Critical in $[g] \iff s = \text{constant}$.

Minimizer in $[g] \iff g$ is "Yamabe metric."

Theorem (L '95).

Theorem (L '95). If smooth compact M^4 admits Kähler-Einstein metric g

Theorem (L '95). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda \leq 0$,

Theorem (L '95). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda \leq 0$, then g is absolute minimizer of $\int_M s^2 d\mu$ among all Riemannian metrics on M.

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

Key idea to to Witten '94.

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

Proof depends on Seiberg-Witten equations

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

Proof depends on Seiberg-Witten equations

$$\mathcal{D}_{\mathcal{A}}\Phi = 0$$

$$F_{\mathcal{A}}^{+} = -\frac{1}{2}\Phi \otimes \bar{\Phi}.$$

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

Proof depends on Seiberg-Witten equations

$$\mathcal{D}_{\mathcal{A}}\Phi = 0$$

$$F_{\mathcal{A}}^{+} = -\frac{1}{2}\Phi \otimes \bar{\Phi}.$$

Non-linear version of Dirac equation,

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M),$$

with equality iff \tilde{g} is Kähler-Einstein, with $\lambda \leq 0$.

Proof depends on Seiberg-Witten equations

$$\mathcal{D}_{\mathcal{A}}\Phi = 0$$

$$F_{\mathcal{A}}^{+} = -\frac{1}{2}\Phi \otimes \bar{\Phi}.$$

Non-linear version of Dirac equation, only defined in dimension 4.

Theorem (Gursky '98).

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$,

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of $\int_{M} |W_{+}|^{2} d\mu$

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of $\int_{M} |W_{+}|^{2} d\mu$ among all conformal classes $[\tilde{g}]$ with $Y([\tilde{g}]) > 0$.

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of $\int_{M} |W_{+}|^{2} d\mu$ among all conformal classes $[\tilde{g}]$ with $Y([\tilde{g}]) > 0$. Moreover, every conformal class $[\tilde{g}]$ with $Y([\tilde{g}]) > 0$ satisfies

Theorem (Gursky '98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then [g] is absolute minimizer of $\int_{M} |W_{+}|^{2} d\mu$ among all conformal classes $[\tilde{g}]$ with $Y([\tilde{g}]) > 0$. Moreover, every conformal class $[\tilde{g}]$ with $Y([\tilde{g}]) > 0$ satisfies

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Einstein metrics with $\lambda > 0$ never minimize $\int_M s^2 d\mu!$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

$$Y([\tilde{g}]) > 0 \iff \exists s > 0 \text{ metrics in } [\tilde{g}].$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Proof depends on modified Yamabe problem and Weitzenböck formula for harmonic 2-forms.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Proof depends on modified Yamabe problem and Weitzenböck formula for harmonic 2-forms.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Proof depends on modified Yamabe problem and Weitzenböck formula for harmonic 2-forms.

Proof 4-dimensional in details, but not philosophy.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Natural Questions.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Natural Questions.

• What about Hermitian Einstein metrics?

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff $[\tilde{g}]$ contains Kähler-Einstein \tilde{g} , with $\lambda > 0$.

Natural Questions.

- What about Hermitian Einstein metrics?
- What about $[\tilde{g}]$ with $Y([\tilde{g}]) \leq 0$?

Which complex surfaces admit

Einstein metrics with $\lambda > 0$?

Which complex surfaces admit

Einstein Hermitian metrics with $\lambda > 0$?

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: Del Pezzo surfaces.

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: Del Pezzo surfaces.

Proof: Seiberg-Witten & Hitchin-Thorpe ineq.

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic form ω . Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic form ω . Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Proof also uses results of Taubes, McDuff, et al.

Hard case: when M is toric.

Hard case: when M is toric.

Must understand critical points of

$$\mathcal{A}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$

where \mathcal{F} is Futaki invariant.

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) = H^2(M,\mathbb{R})$$
(M Del Pezzo)

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) = H^2(M,\mathbb{R})$$
(M Del Pezzo)

The non-trivial cases are toric, and the action \mathcal{A} can be directly computed from moment polygon.

The non-trivial cases are toric, and the action \mathcal{A} can be directly computed from moment polygon. Formula involves barycenters, moments of inertia.

$$\mathcal{A}([\boldsymbol{\omega}]) = \frac{|\partial P|^2}{2} \left(\frac{1}{|P|} + \vec{\mathfrak{D}} \cdot \Pi^{-1} \vec{\mathfrak{D}} \right)$$

 ${\cal A}$ is explicit rational function —

A is explicit rational function — but quite complicated!

 $3 \left[3 + 28\gamma + 96\gamma^2 + 168\gamma^3 + 164\gamma^4 + 80\gamma^5 + 16\gamma^6 + 16\beta^6 (1+\gamma)^4 + 16\alpha^6 (1+\beta+\gamma)^4 + 16\beta^5 (5 + 24\gamma + 43\gamma^2 + 37\gamma^3 + 15\gamma^4 + 2\gamma^5) + 4\beta^4 (41 + 228\gamma + 478\gamma^2 + 496\gamma^3 + 263\gamma^4 + 16\gamma^4 + 16\gamma$ $60\gamma^5 + 4\gamma^6) + 8\beta^3(21 + 135\gamma + 326\gamma^2 + 392\gamma^3 + 248\gamma^4 + 74\gamma^5 + 8\gamma^6) + 4\beta(7 + 58\gamma + 176\gamma^2 + 270\gamma^3 + 228\gamma^4 + 96\gamma^5 + 16\gamma^6) + 4\beta^2(24 + 176\gamma + 479\gamma^2 + 652\gamma^3 + 478\gamma^4 + 176\gamma^2 + 176\gamma$ $172\gamma^{5} + 24\gamma^{6}) + 16\alpha^{5}(5 + 2\beta^{5} + 24\gamma + 43\gamma^{2} + 37\gamma^{3} + 15\gamma^{4} + 2\gamma^{5} + \beta^{4}(15 + 14\gamma) + \beta^{3}(37 + 70\gamma + 30\gamma^{2}) + \beta^{2}(43 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + \beta(24 + 92\gamma + 123\gamma^{2} + 70\gamma^{3} + 123\gamma^{2} +$ $14\gamma^{4})) + 4\alpha^{4}(41 + 4\beta^{6} + 228\gamma + 478\gamma^{2} + 496\gamma^{3} + 263\gamma^{4} + 60\gamma^{5} + 4\gamma^{6} + \beta^{5}(60 + 56\gamma) + \beta^{4}(263 + 476\gamma + 196\gamma^{2}) + 8\beta^{3}(62 + 169\gamma + 139\gamma^{2} + 35\gamma^{3}) + 2\beta^{2}(239 + 876\gamma + 1089\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} + 108\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} + 108\gamma^{2} + 108\gamma^{2}) + 3\beta^{2}(239 + 876\gamma + 108\gamma^{2} +$ $556\gamma^{3} + 98\gamma^{4}) + 4\beta(57 + 263\gamma + 438\gamma^{2} + 338\gamma^{3} + 119\gamma^{4} + 14\gamma^{5})) + 8\alpha^{3}(21 + 135\gamma + 326\gamma^{2} + 392\gamma^{3} + 248\gamma^{4} + 74\gamma^{5} + 8\gamma^{6} + 8\beta^{6}(1 + \gamma) + 2\beta^{5}(37 + 70\gamma + 30\gamma^{2}) + 4\beta^{4}(62 + 32\gamma^{2} + 32\gamma^$ $169\gamma + 139\gamma^2 + 35\gamma^3) + 4\beta^3(98 + 353\gamma + 428\gamma^2 + 210\gamma^3 + 35\gamma^4) + 2\beta^2(163 + 735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + \beta(135 + 736\gamma + 1470\gamma^2 + 1412\gamma^3 + 676\gamma^4 + 140\gamma^5 + 120\gamma^4 + 120\gamma$ $8\gamma^{6})) + 4\alpha(7 + 58\gamma + 176\gamma^{2} + 270\gamma^{3} + 228\gamma^{4} + 96\gamma^{5} + 16\gamma^{6} + 16\beta^{6}(1 + \gamma)^{3} + 4\beta^{5}(24 + 92\gamma + 123\gamma^{2} + 70\gamma^{3} + 14\gamma^{4}) + 4\beta^{4}(57 + 263\gamma + 438\gamma^{2} + 338\gamma^{3} + 119\gamma^{4} + 14\gamma^{5}) + 16\gamma^{6}(1 + \gamma)^{3} + 16\gamma^{6$ $2\beta^{3} (135 + 736\gamma + 1470\gamma^{2} + 1412\gamma^{3} + 676\gamma^{4} + 140\gamma^{5} + 8\gamma^{6}) + 4\beta^{2} (44 + 278\gamma + 645\gamma^{2} + 735\gamma^{3} + 438\gamma^{4} + 123\gamma^{5} + 12\gamma^{6}) + 2\beta (29 + 210\gamma + 556\gamma^{2} + 736\gamma^{3} + 526\gamma^{4} + 184\gamma^{5} + 123\gamma^{6}) + 3\beta^{2} (135 + 736\gamma^{2} + 1412\gamma^{3} + 676\gamma^{4} + 140\gamma^{5} + 8\gamma^{6}) + 4\beta^{2} (147 + 123\gamma^{6} + 1412\gamma^{6} + 123\gamma^{6} + 123\gamma^{6}$ $24\gamma^{6})) + 4\alpha^{2}(24 + 176\gamma + 479\gamma^{2} + 652\gamma^{3} + 478\gamma^{4} + 172\gamma^{5} + 24\gamma^{6} + 24\beta^{6}(1 + \gamma)^{2} + 4\beta^{5}(43 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 1089\gamma^{2} + 556\gamma^{3} + 98\gamma^{4}) + 4\beta^{3}(163 + 123\gamma + 108\gamma^{2} + 30\gamma^{3}) + 2\beta^{4}(239 + 876\gamma + 108\gamma^{2} + 30\gamma^{2} + 30\gamma^{2}) + 2\beta^{4}(239 + 876\gamma + 108\gamma^{2} + 30\gamma^{2} + 30\gamma^{2}) + 2\beta^{4}(239 + 876\gamma + 108\gamma^{2} + 30\gamma^{2} + 30\gamma^{2} + 30\gamma^{2}) + 2\beta^{4}(239 + 876\gamma + 108\gamma^{2} + 30\gamma^{2} + 30\gamma^{2} + 30\gamma^{2}) + 2\beta^{4}(239 + 876\gamma + 108\gamma^{2} + 30\gamma^{2} + 30\gamma^{2} + 30\gamma^{2}) + 2\beta^{4}(239 + 30\gamma^{2} + 30\gamma^{2$ $735\gamma + 1179\gamma^2 + 856\gamma^3 + 278\gamma^4 + 30\gamma^5) + 4\beta(44 + 278\gamma + 645\gamma^2 + 735\gamma^3 + 438\gamma^4 + 123\gamma^5 + 12\gamma^6) + \beta^2(479 + 2580\gamma + 5058\gamma^2 + 4716\gamma^3 + 2178\gamma^4 + 432\gamma^5 + 24\gamma^6)) \Big] / \\$ $12\beta^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5}) + 2\beta(5 + 45\gamma + 144\gamma^{2} + 224\gamma^{3} + 180\gamma^{4} + 60\gamma^{5}) + 12\alpha^{4}(1 + \beta + \gamma)^{2}(5 + 20\gamma + 23\gamma^{2} + 10\gamma^{3} + 10\beta^{3}(1 + \gamma) + \beta^{2}(23 + 46\gamma + 10\gamma^{2} + 1$ $16\gamma^{2}) + 2\beta(10 + 30\gamma + 23\gamma^{2} + 5\gamma^{3})) + 16\alpha^{3}(4 + 28\gamma + 72\gamma^{2} + 90\gamma^{3} + 57\gamma^{4} + 15\gamma^{5} + 15\beta^{5}(1 + \gamma)^{2} + 3\beta^{4}(19 + 57\gamma + 50\gamma^{2} + 13\gamma^{3}) + 3\beta^{3}(30 + 120\gamma + 155\gamma^{2} + 78\gamma^{3} + 15\gamma^{2} +$ $13\gamma^{4}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3} + 20\gamma^{5}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3} + 20\gamma^{5}(1 + \gamma)^{3}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5})) + 12\alpha^{2}(3 + 24\gamma + 69\gamma^{2} + 96\gamma^{3} + 68\gamma^{4} + 20\gamma^{5} + 20\beta^{5}(1 + \gamma)^{3}) + 3\beta^{2}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + \beta(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{2} + 360\gamma^{2} + 360\gamma^{2} + 36\gamma^{4} + 360\gamma^{2} + 36\gamma^{4} + 36$ $\beta^{4}(68 + 272\gamma + 366\gamma^{2} + 200\gamma^{3} + 36\gamma^{4}) + 4\beta^{3}(24 + 120\gamma + 206\gamma^{2} + 155\gamma^{3} + 50\gamma^{4} + 5\gamma^{5}) + 2\beta(12 + 84\gamma + 207\gamma^{2} + 240\gamma^{3} + 136\gamma^{4} + 30\gamma^{5}) + \beta^{2}(69 + 414\gamma + 864\gamma^{2} + 120\gamma^{2} + 120\gamma^{2}$ $824\gamma^{3} + 366\gamma^{4} + 60\gamma^{5})) + 2\alpha(5 + 45\gamma + 144\gamma^{2} + 224\gamma^{3} + 180\gamma^{4} + 60\gamma^{5} + 60\beta^{5}(1 + \gamma)^{4} + 12\beta^{4}(15 + 75\gamma + 136\gamma^{2} + 114\gamma^{3} + 43\gamma^{4} + 5\gamma^{5}) + 12\beta^{2}(12 + 84\gamma + 207\gamma^{2} + 12\beta^{2}) + 12\beta^{2}(12 + 84\gamma^{2} + 12\beta^{2$ $240\gamma^{3} + 136\gamma^{4} + 30\gamma^{5}) + 8\beta^{3}(28 + 168\gamma + 360\gamma^{2} + 360\gamma^{3} + 171\gamma^{4} + 30\gamma^{5}) + 3\beta(15 + 120\gamma + 336\gamma^{2} + 448\gamma^{3} + 300\gamma^{4} + 80\gamma^{5}))]$

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if non-trivial self-dual harmonic form ω is non-zero at every point of M.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if non-trivial self-dual harmonic form ω is non-zero at every point of M.

• open condition;

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if non-trivial self-dual harmonic form ω is non-zero at every point of M.

- open condition;
- holds in Kähler case;

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let [g] be conformal class. We will say that [g] is of symplectic type if non-trivial self-dual harmonic form ω is non-zero at every point of M.

- open condition;
- holds in Kähler case;
- most such classes have Y([g]) < 0.

Theorem A. Let M be the underlying 4-manifold of a del Pezzo surface.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} \frac{(c_{1} \cdot [\omega])^{2}}{[\omega]^{2}},$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} \frac{(c_{1} \cdot [\omega])^{2}}{[\omega]^{2}},$$

with equality iff [g] contains a Kähler metric g

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2} (c_{1} \cdot [\omega])^{2}}{3 [\omega]^{2}},$$

with equality iff [g] contains a Kähler metric g of constant scalar curvature.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2} (c_{1} \cdot [\omega])^{2}}{3 [\omega]^{2}},$$

with equality iff [g] contains a Kähler metric g of constant scalar curvature.

For proof, see arXiv:1310.0848 [math.DG]

Theorem B. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This recovers Gursky's inequality

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$

with equality iff [g] contains a Kähler-Einstein metric g.

This recovers Gursky's inequality — but for a different open set of conformal classes! Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M

Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action.

Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes $\int_{M} |W_{+}|^{2} d\mu$ among symplectic conformal classes

Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes $\int_{M} |W_{+}|^{2} d\mu$ among symplectic conformal classes which are invariant under the torus action.

Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes $\int_{M} |W_{+}|^{2} d\mu$ among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, [g] is the unique such minimizer.

Theorem C. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class [g] minimizes $\int_{M} |W_{+}|^{2} d\mu$ among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, [g] is the unique such minimizer.

Key inequality:

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} \mathcal{A}([\omega]),$$

with equality only if $[\tilde{g}]$ contains extremal Kähler metrics.

Even Kähler-Einstein cases would require new ideas.

Even Kähler-Einstein cases would require new ideas.

Nearly symplectic structures?

Even Kähler-Einstein cases would require new ideas.

Nearly symplectic structures?

Non-Kähler cases:

Even Kähler-Einstein cases would require new ideas.

Nearly symplectic structures?

Non-Kähler cases: eliminate toric condition?