Homework \# 2

MAT 566

Due 5/5/22*

1. (a) Let $\wp: E \rightarrow N$ be a smooth complex vector bundle of rank r, and let M be any smooth manifold. Show that that

$$
\operatorname{id}_{M} \times \wp:(M \times E) \rightarrow(M \times N)
$$

can be canonically be given the structure of a smooth complex vector bundle of rank r. If $\varpi: M \times N \rightarrow N$ is the second-factor projection, this new bundle is often denoted $\varpi^{*} E$, and called the pull-back of E via ϖ. Show that this has a natural analogue for real vector bundles.
(b) Let $\wp: E \rightarrow N$ be a smooth complex vector bundle of rank r, and suppose that $M \subset N$ is a smooth, embedded submanifold. Show that

$$
\left.\wp\right|_{\wp^{-1}(M)}: \wp^{-1}(M) \rightarrow M
$$

can be canonically be given the structure of a smooth complex vector bundle of rank r. This new bundle is called the restriction of E to the submanifold M, and is often denoted by $j^{*} E$, where $j: M \hookrightarrow N$ denotes the embedding. Show that the same construction can also be applied to real vector bundles.
(c) Let $\wp: E \rightarrow N$ be a smooth complex vector bundle of rank r, and let $\Phi: M \rightarrow N$ be any smooth map. By combining parts (a) and (b), show that one can define a smooth complex vector bundle $\Phi^{*} E \rightarrow M$, called the pull-back of E via Φ, by first pulling E back to $M \times N$, and then restricting to the graph of Φ. If $p \in M$ is any point, show that the fiber $\left(\Phi^{*} E\right)_{p}$ is canonically isomorphic to $E_{\Phi(p)}:=\wp^{-1}(\Phi(p))$. In particular, $\Phi^{*} E$ also has rank r. Now describe the analogue for real vector bundles.

[^0]2. (a) Let $\wp: E \rightarrow N$ be a smooth complex vector bundle, and $\Phi: M \rightarrow N$ a smooth map. If σ is a local section of E with domain an open subset $U \subset N$, we can then define a local section $\Phi^{*} \sigma$ of $\Phi^{*} E$ over $\Phi^{-1}(U) \subset M$ by setting $\left(\Phi^{*} \sigma\right)(p)=\sigma(\Phi(p))$ for each $p \in M$, using the canonical isomorphism $\left(\Phi^{*} E\right)_{p}=E_{\Phi(p)}$. If σ is smooth, show that $\Phi^{*} \sigma$ is also smooth, by using the constructions described in Problem 1.
(b) Use this to show that a smooth local trivialization of E over $U \subset N$ induces a corresponding smooth local trivialization of $\Phi^{*} E$ over $\Phi^{-1}(U) \subset M$.
(c) If E is equipped with a smooth connection ∇, use this to show that there is a unique smooth connection $\widetilde{\nabla}$ on $\Phi^{*} E$ such that
$$
\widetilde{\nabla}\left(\Phi^{*} \sigma\right)=\Phi^{*}(\nabla \sigma)
$$
for any smooth section σ of E.
Hint: Explain the precise meaning of the pull-back on the right-hand side.
(d) Show that the curvature of $\widetilde{\nabla}$ is related to the curvature of ∇ by
$$
F^{\tilde{\nabla}}=\Phi^{*}\left(F^{\nabla}\right)
$$

Hint: Again, explain the meaning of the pull-back on the right-hand side.
(e) Use this to show that the Chern classes of E are and $\Phi^{*} E$ related by

$$
c_{j}\left(\Phi^{*} E\right)=\Phi^{*}\left[c_{j}(E)\right]
$$

for every integer j, where, on the right-hand side, $\Phi^{*}: H^{2 j}(N) \rightarrow H^{2 j}(M)$ denotes the usual pull-back in deRam cohomology.
3. (a) Let $\wp: \mathrm{E} \rightarrow N$ be a smooth real vector bundle, and let $\Phi: M \rightarrow N$ be a smooth map. By imitating the arguments of Problem 2, show that any smooth connection ∇ on E induces a smooth connection $\widetilde{\nabla}$ on $\Phi^{*} \mathrm{E}$. How are the curvatures of these two connections related?
(b) Show that the Pontryagin classes of E and $\Phi^{*} \mathrm{E}$ are related by

$$
p_{k}\left(\Phi^{*} E\right)=\Phi^{*}\left[p_{k}(E)\right]
$$

for every integer k, where, on the right-hand side, $\Phi^{*}: H^{4 k}(N) \rightarrow H^{4 k}(M)$ denotes the usual pull-back in deRam cohomology.
4. (a) Let $E \rightarrow M$ be a smooth complex vector bundle, and let $E^{*} \rightarrow M$ be its dual vector bundle. Given any connection ∇ on E, show that there is a unique connection $\widehat{\nabla}$ on E^{*} such that, for any vector field X on M, any smooth section ξ of E and any smooth section φ of E^{*},

$$
X[\varphi(\xi)]=\left[\widehat{\nabla}_{X} \varphi\right](\xi)+\varphi\left(\nabla_{X} \xi\right)
$$

(b) Show that the curvatures of ∇ and $\hat{\nabla}$ are related by

$$
F^{\hat{\nabla}}=-\left(F^{\nabla}\right)^{\top},
$$

where ${ }^{\top}$ denotes the "transpose" isomorphism $\Omega^{2}(\operatorname{End}(E)) \rightarrow \Omega^{2}\left(\operatorname{End}\left(E^{*}\right)\right)$ induced by the adjoint isomorphism $\operatorname{End}(E)=E^{*} \otimes E \cong E \otimes E^{*}=\operatorname{End}\left(E^{*}\right)$. In other words, given a local frame for E, and then using the associated dual frame for E^{*}, the curvature matrix of $\widehat{\nabla}$ is minus the transpose of the curvature matrix of ∇.
(c) Use this to show that the Chern classes of E and E^{*} are related by

$$
c_{j}\left(E^{*}\right)=(-1)^{j} c_{j}(E)
$$

(d) If a complex vector bundle E is isomorphic to its complex-conjugate bundle \bar{E}, show that the Chern class $c_{j}(E)$ vanishes whenever j is odd.
(e) If $\mathrm{E} \rightarrow M$ is a real vector bundle, we defined its Pontryagin classes to be

$$
p_{k}(\mathrm{E})=(-1)^{k} c_{2 k}(\mathrm{E} \otimes \mathbb{C}) \in H^{4 k}(M)
$$

Notice that this definition only uses the Chern classes c_{j} of the complexified bundle $\mathrm{E} \otimes \mathbb{C}=\mathrm{E} \oplus i \mathrm{E}$ when j is even. Why can we safely ignore the corresponding Chern classes c_{j} for odd values of j ?
5. If $\mathrm{E} \rightarrow M$ is a real vector bundle, its total Pontryagin class is defined by

$$
p(\mathrm{E}):=1+p_{1}(\mathrm{E})+p_{2}(\mathrm{E})+p_{3}(\mathrm{E})+\cdots \quad \in \bigoplus_{k} H^{4 k}(M) .
$$

Prove that

$$
p\left(\mathrm{E}_{1} \oplus \mathrm{E}_{2}\right)=p\left(\mathrm{E}_{1}\right) p\left(\mathrm{E}_{2}\right)
$$

for any Whitney sum of $E_{1} \oplus E_{2}$ of two smooth real vector bundles.
6. Let $M^{n} \subset \mathbb{R}^{n+2}$ be a compact oriented codimension-2 submanifold of Euclidean space. The normal bundle $\nu=(T M)^{\perp}$ of M is thus an oriented rank-2 vector bundle over M, and carries a canonical positive-definite inner product induced by the Euclidean inner product on \mathbb{R}^{n+2}. Let $J: \nu \rightarrow \nu$ denote rotation through $+90^{\circ}$ with respect to this inner product and the natural orientation. Since $J^{2}=-I$, observe that this allows us to view ν as the underlying oriented real bundle of a complex line bundle $L \rightarrow M$.
(a) Show that $M \subset \mathbb{R}^{n+2}$ has a finite cover $\left\{U_{j} \mid j=1, \ldots, m\right\}$ by open sets $U_{j} \subset \mathbb{R}^{n+2}$ on which there exist smooth functions $f_{j}: U_{j} \rightarrow \mathbb{C}$ such that

- $f_{j}^{-1}(0)=U_{j} \cap M ;$
- $d f_{j} \neq 0$ at every point of $U_{j} \cap M$; and
- $d f_{j} \circ J=\mathrm{i} d f_{j}$ at every point of of $U_{j} \cap M$, where $\mathrm{i}=\sqrt{-1}$.

Now extend this to a finite cover $\left\{U_{j} \mid j=0, \ldots, m\right\}$ of \mathbb{R}^{n+2} by setting $U_{0}=\mathbb{R}^{n+2}-M$, and equip U_{0} with the constant function $f_{0} \equiv 1$.
(b) Whenever $U_{j} \cap U_{k} \neq \varnothing$, show that there is a unique smooth function

$$
\phi_{j k}: U_{j} \cap U_{k} \rightarrow \mathbb{C}^{\times}:=\mathbb{C}-0
$$

such that $f_{k}=f_{j} \phi_{j k}$ on $U_{j} \cap U_{k}$.
(c) Show that the $\phi_{j k}$ satisfy

$$
\phi_{j k} \phi_{k j}=1 \text { on } U_{j} \cap U_{k}, \quad \text { and } \quad \phi_{j k} \phi_{k \ell} \phi_{\ell j}=1 \text { on } U_{j} \cap U_{k} \cap U_{\ell},
$$

and so are the transition functions for a complex line bundle $\mathscr{L} \rightarrow \mathbb{R}^{n+2}$.
(d) Show that the restriction of \mathscr{L} to M is isomorphic to $L \rightarrow M$. Then use this to prove that the normal bundle $\nu \rightarrow M$ is trivial.
(e) Use this to show that $p_{k}(T M)=0$ for every $k>0$.
7.(a) Show that $p_{1}\left(T \mathbb{C P}_{n}\right) \neq 0$ if $n \geq 2$.
(b) Prove that $\mathbb{C P}_{3}$ cannot be smoothly embedded in \mathbb{R}^{8}.
(c) Prove that $\mathbb{C P}_{2} \times S^{m}$ cannot be smoothly embedded in \mathbb{R}^{m+6}.

[^0]: *But accepted through 5/9/22.

