Homework \# 1

MAT 566

Due 3/24/22

1. Let n be a positive integer, and let k be an integer with $0 \leq k \leq n$. Let $\mathcal{S}=\left\{\left[a_{j k}\right] \mid a_{j k}=a_{k j} \in \mathbb{R}\right\}$ be the set of real symmetric $n \times n$ matrices, and and let $\mathbf{H} \in \mathcal{S}$ be the diagonal matrix

Let \mathcal{T} be the set of real upper-triangular $n \times n$ matrices

$$
\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
& * & * & * & * & * \\
& & * & * & * & * \\
& & & * & * & * \\
& & & & * & * \\
& & & & & *
\end{array}\right]
$$

and let $\mathbf{I} \in \mathcal{T}$ denote the $n \times n$ identity matrix. Use the inverse function theorem to show that the smooth map $\Psi: \mathcal{T} \rightarrow \mathcal{S}$ defined by

$$
\Psi(\mathbf{A})=\mathbf{A}^{t} \mathbf{H} \mathbf{A}
$$

restricts to some open neighborhood \mathcal{V} of $\mathbf{I} \in \mathcal{T}$ as a diffeomorphism onto some open neighborhood \mathcal{U} of $\mathbf{H} \in \mathcal{S}$.

Hint: If $\mathbf{B} \in \mathcal{T}$, first calculate $\Psi(\mathbf{I}+t \mathbf{B})$ modulo terms of order t^{2}, For later use, define $\Phi: \mathcal{U} \rightarrow \mathcal{V}$ to be the inverse diffeomorphism $\left(\left.\Psi\right|_{\mathcal{V}}\right)^{-1}$.
2. (a) Suppose that a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a non-degenerate critical point of index k at $0 \in \mathbb{R}^{n}$. Prove that there is a linear change of coordinates $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ so that the Hessian of f at 0 becomes $2 \mathbf{H}$, where \mathbf{H} is the matrix of problem 1.
(b) Now, after having first made this linear coordinate-change, show that there is then a symmetric-matrix-valued function $[\mathbf{h}]=\left[h_{j k}\right]: \mathbb{R}^{n} \rightarrow \mathcal{S}$ such that $[\mathbf{h}(0)]=\mathbf{H}$, and such that

$$
f(\mathrm{x})-f(0)=\sum_{j, k=1}^{n} h_{j k}(\mathrm{x}) x^{j} x^{k}=\mathrm{x}^{t}[\mathbf{h}(\mathrm{x})] \mathrm{x}
$$

where, for brevity of notation, we have set

$$
\mathrm{x}=\left[\begin{array}{c}
x^{1} \\
\vdots \\
x^{n}
\end{array}\right], \quad \mathrm{x}^{t}=\left[\begin{array}{lll}
x^{1} & \cdots & x^{n}
\end{array}\right] .
$$

(c) Let $U \subset \mathbb{R}^{n}$ be the open neighborhood of 0 defined by requiring that $[\mathbf{h}(\mathrm{x})] \in \mathcal{U}$, where $\mathcal{U} \subset \mathcal{S}$ is the domain of Φ, as defined in Problem 1. Define a map y : $U \rightarrow \mathbb{R}^{n}$ by

$$
y(x)=\Phi([h(x)]) \cdot x
$$

where • denotes matrix multiplication. Use the inverse function theorem to show that this map is a diffeomorphism between some neighborhood $U^{\prime} \subset U$ of $0 \in \mathbb{R}^{n}$ and a neighborhood $V \subset \mathbb{R}^{n}$ of $0 \in \mathbb{R}^{n}$. We may thus regard $\mathrm{x} \mapsto \mathrm{y}$ as a change of coordinates that sends the origin to itself.
(d) Now prove the Morse Lemma by showing that, in these coordinates,

$$
f(\mathrm{y})-f(0)=\mathrm{y}^{t} \mathbf{H} \mathbf{y}=-\sum_{j=1}^{k}\left(y^{j}\right)^{2}+\sum_{j=k+1}^{n}\left(y^{j}\right)^{2}
$$

3. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}$ be distinct real numbers, and define

$$
f: \mathbb{R} \mathbb{P}^{n} \rightarrow \mathbb{R}
$$

by

$$
f\left(\left[x^{0}, x^{1}, \ldots, x^{n}\right]\right)=\frac{\sum_{j=0}^{n} \lambda_{j}\left|x^{j}\right|^{2}}{\sum_{j=0}^{n}\left|x^{j}\right|^{2}},
$$

where, for any $\left(x^{0}, x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n+1}-\{0\}$, we use $\left[x^{0}, x^{1}, \ldots, x^{n}\right]$ to denote its equivalence class in $\mathbb{R P}^{n}=\left(\mathbb{R}^{n+1}-\{0\}\right) / \mathbb{R}^{\times}$. (Here the multiplicative group \mathbb{R}^{\times}of non-zero real numbers acts on \mathbb{R}^{n+1} by scalar multiplication.)
(a) Show that f is a Morse function by explicitly finding all its critical points, and then showing that each one is non-degenerate. Also compute the index of each critical point.
(b) Use (a) to calculate the Euler characteristic $\chi\left(\mathbb{R P}^{n}\right)$.
(c) Use the pull-back of f to the double cover $S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ to compute $\chi\left(S^{n}\right)$.
4. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}$ again be distinct real numbers, and define

$$
f: \mathbb{C P}_{n} \rightarrow \mathbb{R}
$$

by

$$
f\left(\left[z^{0}, z^{1}, \ldots, z^{n}\right]\right)=\frac{\sum_{j=0}^{n} \lambda_{j}\left|z^{j}\right|^{2}}{\sum_{j=0}^{n}\left|z^{j}\right|^{2}},
$$

where, for any $\left(z^{0}, z^{1}, \ldots, z^{n}\right) \in \mathbb{C}^{n+1}-\{0\}$, we use $\left[z^{0}, z^{1}, \ldots, z^{n}\right]$ to denote its equivalence class in $\mathbb{C P}_{n}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{\times}$. (Here the multiplicative group \mathbb{C}^{\times}of non-zero real numbers acts on \mathbb{C}^{n+1} by scalar multiplication.)
(a) Show that f is a Morse function by explicitly finding all its critical points, and then showing that each one is non-degenerate. Also compute the index of each critical point.
(b) Use (a) to calculate the Euler characteristic $\chi\left(\mathbb{C P}_{n}\right)$.
5. Quaternionic projective n-space $\mathbb{H}_{\mathbb{P}}{ }_{n}$ is defined as $\left(\mathbb{H}^{n+1}-\{0\}\right) / \mathbb{H}^{\times}$, where the non-zero quaternions \mathbb{H}^{\times}act on $\mathbb{H}^{n+1} \cong \mathbb{R}^{4 n+4}$ by scalar multiplication on the right. Show that $\mathbb{H} \mathbb{P}_{n}$ is a smooth compact $4 n$-manifold. Then, by analogy with Problem 4, construct a Morse function on $\mathbb{H P}_{n}$, and use it to calculate $\chi\left(\mathbb{H} \mathbb{P}_{n}\right)$.
6. Let $f: M \rightarrow \mathbb{R}$ is a Morse function on an n-manifold M, and let ν_{k} be the number of index- k critical points of f. Recall that we have proved the weak Morse inequality

$$
b_{k}(M) \leq \nu_{k}, \quad k=0, \ldots, n
$$

and the Euler-characteristic formula

$$
\chi(M)=\sum_{j=0}^{n}(-1)^{j} \nu_{j} .
$$

(a) Show that these facts imply the following result:

Theorem. If every critical point has even index, then $b_{k}(M)=\nu_{k}$ for every k.
(b) Use this result to calculate the Betti numbers of $\mathbb{C P}_{n}$ and $\mathbb{H}_{\mathbb{P}_{n}}$.

Hint. Use the Morse functions of Problems 4 and 5.
(c) Use this same method to calculate the Betti numbers of $S^{2 n}$.

Hint. Do not use the Morse function of Problem 3!
7. Let $f_{1}: M_{1} \rightarrow \mathbb{R}$ and $f_{2}: M_{2} \rightarrow \mathbb{R}$ be Morse functions on two smooth manifolds. Letting $\varpi_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\varpi_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ denote the factor projections, now define $f: M_{1} \times M_{2} \rightarrow \mathbb{R}$ by

$$
f=f_{1} \circ \varpi_{1}+f_{2} \circ \varpi_{2} .
$$

(a) Prove that f is a Morse function. What are its critical points? What is the Morse index of each critical point?
(b) Use this to prove that $\chi\left(M_{1} \times M_{2}\right)=\chi\left(M_{1}\right) \chi\left(M_{2}\right)$.
(c) If f_{1} and f_{2} only have critical points of even index, find a formula for the Betti numbers $b_{j}\left(M_{1} \times M_{2}\right)$ in terms of the Betti numbers of M_{1} and M_{2}.

