Homework # 1

MAT 566

Due 3/24/22

1. Let *n* be a positive integer, and let *k* be an integer with $0 \le k \le n$. Let $S = \{[a_{jk}] \mid a_{jk} = a_{kj} \in \mathbb{R}\}$ be the set of real symmetric $n \times n$ matrices, and and let $\mathbf{H} \in S$ be the diagonal matrix

Let \mathcal{T} be the set of real upper-triangular $n \times n$ matrices

and let $\mathbf{I} \in \mathcal{T}$ denote the $n \times n$ identity matrix. Use the inverse function theorem to show that the smooth map $\Psi : \mathcal{T} \to \mathcal{S}$ defined by

$$\Psi(\mathbf{A}) = \mathbf{A}^t \mathbf{H} \mathbf{A}$$

restricts to some open neighborhood \mathcal{V} of $\mathbf{I} \in \mathcal{T}$ as a diffeomorphism onto some open neighborhood \mathcal{U} of $\mathbf{H} \in \mathcal{S}$.

Hint: If $\mathbf{B} \in \mathcal{T}$, first calculate $\Psi(\mathbf{I} + t\mathbf{B})$ modulo terms of order t^2 ,

For later use, define $\Phi: \mathcal{U} \to \mathcal{V}$ to be the inverse diffeomorphism $(\Psi|_{\mathcal{V}})^{-1}$.

2. (a) Suppose that a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ has a non-degenerate critical point of index k at $\mathbf{0} \in \mathbb{R}^n$. Prove that there is a linear change of coordinates $\mathbb{R}^n \to \mathbb{R}^n$ so that the Hessian of f at $\mathbf{0}$ becomes $2\mathbf{H}$, where \mathbf{H} is the matrix of problem 1.

(b) Now, after having first made this linear coordinate-change, show that there is then a symmetric-matrix-valued function $[\mathbf{h}] = [h_{jk}] : \mathbb{R}^n \to \mathcal{S}$ such that $[\mathbf{h}(\mathbf{0})] = \mathbf{H}$, and such that

$$f(\mathbf{x}) - f(\mathbf{0}) = \sum_{j,k=1}^{n} h_{jk}(\mathbf{x}) x^{j} x^{k} = \mathbf{x}^{t} \left[\mathbf{h}(\mathbf{x}) \right] \mathbf{x}$$

where, for brevity of notation, we have set

$$\mathbf{x} = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix}, \qquad \mathbf{x}^t = \begin{bmatrix} x^1 & \cdots & x^n \end{bmatrix}.$$

(c) Let $U \subset \mathbb{R}^n$ be the open neighborhood of **0** defined by requiring that $[\mathbf{h}(\mathsf{x})] \in \mathcal{U}$, where $\mathcal{U} \subset \mathcal{S}$ is the domain of Φ , as defined in Problem 1. Define a map $\mathsf{y} : U \to \mathbb{R}^n$ by

$$\mathbf{y}(\mathbf{x}) = \Phi([\mathbf{h}(\mathbf{x})]) \cdot \mathbf{x}$$

where \cdot denotes matrix multiplication. Use the inverse function theorem to show that this map is a diffeomorphism between some neighborhood $U' \subset U$ of $\mathbf{0} \in \mathbb{R}^n$ and a neighborhood $V \subset \mathbb{R}^n$ of $\mathbf{0} \in \mathbb{R}^n$. We may thus regard $\mathbf{x} \mapsto \mathbf{y}$ as a change of coordinates that sends the origin to itself.

(d) Now prove the Morse Lemma by showing that, in these coordinates,

$$f(\mathbf{y}) - f(\mathbf{0}) = \mathbf{y}^t \mathbf{H} \mathbf{y} = -\sum_{j=1}^k (y^j)^2 + \sum_{j=k+1}^n (y^j)^2.$$

3. Let $\lambda_0 < \lambda_1 < \cdots < \lambda_n$ be distinct real numbers, and define

$$f: \mathbb{RP}^n \to \mathbb{R}$$

by

$$f([x^0, x^1, \dots, x^n]) = \frac{\sum_{j=0}^n \lambda_j |x^j|^2}{\sum_{j=0}^n |x^j|^2},$$

where, for any $(x^0, x^1, \ldots, x^n) \in \mathbb{R}^{n+1} - \{0\}$, we use $[x^0, x^1, \ldots, x^n]$ to denote its equivalence class in $\mathbb{RP}^n = (\mathbb{R}^{n+1} - \{0\})/\mathbb{R}^{\times}$. (Here the multiplicative group \mathbb{R}^{\times} of non-zero real numbers acts on \mathbb{R}^{n+1} by scalar multiplication.)

(a) Show that f is a Morse function by explicitly finding all its critical points, and then showing that each one is non-degenerate. Also compute the index of each critical point.

(b) Use (a) to calculate the Euler characteristic $\chi(\mathbb{RP}^n)$.

(c) Use the pull-back of f to the double cover $S^n \to \mathbb{RP}^n$ to compute $\chi(S^n)$.

4. Let $\lambda_0 < \lambda_1 < \cdots < \lambda_n$ again be distinct real numbers, and define

$$f:\mathbb{CP}_n\to\mathbb{R}$$

by

$$f([z^0, z^1, \dots, z^n]) = \frac{\sum_{j=0}^n \lambda_j |z^j|^2}{\sum_{j=0}^n |z^j|^2},$$

where, for any $(z^0, z^1, \ldots, z^n) \in \mathbb{C}^{n+1} - \{0\}$, we use $[z^0, z^1, \ldots, z^n]$ to denote its equivalence class in $\mathbb{CP}_n = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^{\times}$. (Here the multiplicative group \mathbb{C}^{\times} of non-zero real numbers acts on \mathbb{C}^{n+1} by scalar multiplication.)

(a) Show that f is a Morse function by explicitly finding all its critical points, and then showing that each one is non-degenerate. Also compute the index of each critical point.

(b) Use (a) to calculate the Euler characteristic $\chi(\mathbb{CP}_n)$.

5. Quaternionic projective *n*-space \mathbb{HP}_n is defined as $(\mathbb{H}^{n+1} - \{\mathbf{0}\})/\mathbb{H}^{\times}$, where the non-zero quaternions \mathbb{H}^{\times} act on $\mathbb{H}^{n+1} \cong \mathbb{R}^{4n+4}$ by scalar multiplication on the right. Show that \mathbb{HP}_n is a smooth compact 4n-manifold. Then, by analogy with Problem 4, construct a Morse function on \mathbb{HP}_n , and use it to calculate $\chi(\mathbb{HP}_n)$. 6. Let $f: M \to \mathbb{R}$ is a Morse function on an *n*-manifold M, and let ν_k be the number of index-k critical points of f. Recall that we have proved the weak Morse inequality

$$b_k(M) \leq \nu_k, \quad k = 0, \dots, n,$$

and the Euler-characteristic formula

$$\chi(M) = \sum_{j=0}^{n} (-1)^{j} \nu_{j}.$$

(a) Show that these facts imply the following result:

Theorem. If every critical point has even index, then $b_k(M) = \nu_k$ for every k.

(b) Use this result to calculate the Betti numbers of \mathbb{CP}_n and \mathbb{HP}_n .

Hint. Use the Morse functions of Problems 4 and 5.

(c) Use this same method to calculate the Betti numbers of S^{2n} .

Hint. Do not use the Morse function of Problem 3!

7. Let $f_1: M_1 \to \mathbb{R}$ and $f_2: M_2 \to \mathbb{R}$ be Morse functions on two smooth manifolds. Letting $\varpi_1: M_1 \times M_2 \to M_1$ and $\varpi_2: M_1 \times M_2 \to M_2$ denote the factor projections, now define $f: M_1 \times M_2 \to \mathbb{R}$ by

$$f = f_1 \circ \varpi_1 + f_2 \circ \varpi_2.$$

(a) Prove that f is a Morse function. What are its critical points? What is the Morse index of each critical point?

(b) Use this to prove that $\chi(M_1 \times M_2) = \chi(M_1) \chi(M_2)$.

(c) If f_1 and f_2 only have critical points of even index, find a formula for the Betti numbers $b_j(M_1 \times M_2)$ in terms of the Betti numbers of M_1 and M_2 .