MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

May 6, 2021

Representations of SU(2) Theorem.

Theorem. The complex irreducible representations of SU(2) are classified by the non-negative integers n.

Theorem. The complex irreducible representations of SU(2) are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible SU(2)-module V_n of dimension n+1. This can be expressed in terms

Theorem. The complex irreducible representations of SU(2) are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible SU(2)-module V_n of dimension n+1. This can be expressed in terms of the basic 2-dimensional representation S as

Theorem. The complex irreducible representations of SU(2) are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible SU(2)-module V_n of dimension n+1. This can be expressed in terms of the basic 2-dimensional representation S as

$$\mathbb{V}_n = \odot^n \mathbb{S}$$
.

Theorem. The complex irreducible representations of SU(2) are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible SU(2)-module V_n of dimension n+1. This can be expressed in terms of the basic 2-dimensional representation S as

$$\mathbb{V}_n = \odot^n \mathbb{S}$$
.

Here \odot denotes the symmetric tensor product.

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$U(1) \subset SU(2)$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$U(1) \subset SU(2)$$

Irreducible representations classified by n, where

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$U(1) \subset SU(2)$$

Irreducible representations classified by n, where

$$Hv = nv, \qquad Xv = 0$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

$$U(1) \subset SU(2)$$

Irreducible representations classified by n, where

$$Hv = nv, \qquad Xv = 0$$

for some $v \neq 0$. This n is called "highest weight".

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

H then acts with eigenvalues

$$-n, -n+2, \ldots, n-2, n$$

$$H = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H$$

H then acts with eigenvalues

$$-n, -n+2, \ldots, n-2, n$$

$$z \in \mathbf{U}(1) \subset \mathbb{C}$$
 acts with eigenvalues $z^{-n}, z^{-n+2}, \dots, z^{n-2}, z^n$

For a general compact, simply connected, simple ${\bf G}$ the circle ${\mathbb T}={\bf U}(1)$ is replaced with

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

where $\mathfrak{h} \subset \mathfrak{g}_{\mathbb{C}}$ is a "Cartan subalgebra."

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

where $\mathfrak{h} \subset \mathfrak{g}_{\mathbb{C}}$ is a "Cartan subalgebra."

Torus $\mathbb{T}^k \subset G$ acts on $\mathfrak{g}_{\mathbb{C}}$ by adjoint action.

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

where $\mathfrak{h} \subset \mathfrak{g}_{\mathbb{C}}$ is a "Cartan subalgebra."

Torus $\mathbb{T}^k \subset G$ acts on $\mathfrak{g}_{\mathbb{C}}$ by adjoint action.

Weights (\sim eigenvalues) define root system $R \subset \mathfrak{h}^*$.

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

where $\mathfrak{h} \subset \mathfrak{g}_{\mathbb{C}}$ is a "Cartan subalgebra."

Torus $\mathbb{T}^k \subset G$ acts on $\mathfrak{g}_{\mathbb{C}}$ by adjoint action.

Weights (\sim eigenvalues) define root system $R \subset \mathfrak{h}^*$.

Such G are characterized by their root systems.

the circle $\mathbb{T} = \mathbf{U}(1)$ is replaced with

the maximal torus $\mathbb{T}^k \subset \mathsf{G}$

whose dimension k is called the rank of G.

Its Lie algebra is $i\mathfrak{h}$

where $\mathfrak{h} \subset \mathfrak{g}_{\mathbb{C}}$ is a "Cartan subalgebra."

Torus $\mathbb{T}^k \subset G$ acts on $\mathfrak{g}_{\mathbb{C}}$ by adjoint action.

Weights (\sim eigenvalues) define root system $R \subset \mathfrak{h}^*$.

Such **G** are characterized by their root systems.

These are classified by Dynkin diagrams.