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Representations of SU(2)

Theorem. The complex irreducible representa-
tions of SU(2) are classified by the non-negative
integers n. For each n, there is, up to isomor-
phism, a unique irreducible SU(2)-module Vn of
dimension n + 1. This can be expressed in terms
of the basic 2-dimensional representation S as

Vn = �nS.

Here � denotes the symmetric tensor product.
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Notice that iH generates “maximal torus”

U(1) ⊂ SU(2)

Irreducible representations classified by n, where

Hv = nv, Xv = 0

for some v 6= 0. This n is called “highest weight”.
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[H,X ] = 2X, [H, Y ] = −2Y , [X,Y ] = H

H then acts with eigenvalues

−n,−n + 2, . . . , n− 2, n

z ∈ U(1) ⊂ C acts with eigenvalues

z−n, z−n+2, . . . , zn−2, zn
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For a general compact, simply connected, simple G

the circle T = U(1) is replaced with

the maximal torus Tk ⊂ G

whose dimension k is called the rank of G.

Its Lie algebra is ih

where h ⊂ gC is a “Cartan subalgebra.”

Torus Tk ⊂ G acts on gC by adjoint action.

Weights (∼ eigenvalues) define root system R ⊂ h∗.

Such G are characterized by their root systems.

These are classified by Dynkin diagrams.
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