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Here © denotes the symmetric tensor product.












H, X| =2X,

H,Y| = -2V,

X,Y]=H
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U(1) c SU(2)

Irreducible representations classified by n, where
Hv =nv, Xv=10
for some v # 0. This n is called “highest weight”.



H,X|=2X, |H,Y|=-2Y, [X,Y|=H

H then acts with eigenvalues

—n,—n+2,...,n—2,n



H,X|=2X, |H,Y|=-2Y, [X,Y|=H

H then acts with eigenvalues

—n,—n+2,...,n—2,n

z € U(1) C C acts with eigenvalues

L AT L L



For a general compact, simply connected, simple G



For a general compact, simply connected, simple G

the circle T = U(1) is replaced with



For a general compact, simply connected, simple G

the circle T = U(1) is replaced with

the maximal torus TF C G



For a general compact, simply connected, simple G

the circle T = U(1) is replaced with
the maximal torus T" C G

whose dimension k is called the rank of G.



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with

the maximal torus T C G

whose dimension £ is called the rank of G.

Its Lie algebra is 2f



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with

the maximal torus T# C G

whose dimension £ is called the rank of G.

Its Lie algebra is 2f

where h C g¢ is a “Cartan subalgebra.”



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with

the maximal torus T# C G

whose dimension £ is called the rank of G.

Its Lie algebra is 2f

where h C g¢ is a “Cartan subalgebra.”

Torus T¥ C G acts on ge by adjoint action.



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with

the maximal torus T C G

whose dimension £ is called the rank of G.

Its Lie algebra is 2f

where h C g¢ is a “Cartan subalgebra.”

Torus T¥ C G acts on ge by adjoint action.

Weights (~ eigenvalues) define root system R C h*.



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with

the maximal torus T C G

whose dimension £ is called the rank of G.

Its Lie algebra is 2f

where h C g¢ is a “Cartan subalgebra.”

Torus T¥ C G acts on ge by adjoint action.
Weights (~ eigenvalues) define root system R C h*.

Such G are characterized by their root systems.



For a general compact, simply connected, simple G
the circle T = U(1) is replaced with
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whose dimension £ is called the rank of G.

Its Lie algebra is 2f

where h C g¢ is a “Cartan subalgebra.”

Torus T¥ C G acts on ge by adjoint action.
Weights (~ eigenvalues) define root system R C h*.
Such G are characterized by their root systems.

These are classified by Dynkin diagrams.



