MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
May 42021

Representations of $\mathbf{S U}(2)$

Representations of $\mathbf{S U}(2)$

Theorem.

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n.

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

$$
\mathbb{V}_{n}=\odot^{n} \mathbb{S}
$$

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

$$
\mathbb{V}_{n}=\odot^{n} \mathbb{S} .
$$

Here \odot denotes the symmetric tensor product.

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad Y=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\hline
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H}
\end{gathered}
$$

$$
\begin{aligned}
& H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H}
\end{aligned}
$$

Notice that $i H$ generates "maximal torus"

$$
\begin{aligned}
& H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H}
\end{aligned}
$$

Notice that $i H$ generates "maximal torus"

$$
\mathbf{U}(1) \subset \mathbf{S U}(2)
$$

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
\\
1
\end{array}\right]
$$

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

Notice that $i H$ generates "maximal torus"

$$
\mathbf{U}(1) \subset \mathbf{S U}(2)
$$

Irreducible representations classified by n, where

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{ll}
1
\end{array}\right]
$$

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

Notice that $i H$ generates "maximal torus"

$$
\mathbf{U}(1) \subset \mathbf{S U}(2)
$$

Irreducible representations classified by n, where

$$
H v=n v, \quad X v=0
$$

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
\\
1
\end{array}\right]
$$

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

Notice that $i H$ generates "maximal torus"

$$
\mathbf{U}(1) \subset \mathbf{S U}(2)
$$

Irreducible representations classified by n, where

$$
H v=n v, \quad X v=0
$$

for some $v \neq 0$. This n is called "highest weight".

$$
\begin{gathered}
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H}
\end{gathered}
$$

H then acts with eigenvalues

$$
-n,-n+2, \ldots, n-2, n
$$

$$
H=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right], \quad X=\left[\begin{array}{l}
1 \\
\end{array}\right], \quad Y=\left[\begin{array}{l}
\\
1
\end{array}\right]
$$

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

H then acts with eigenvalues

$$
-n,-n+2, \ldots, n-2, n
$$

$z \in \mathbf{U}(1) \subset \mathbb{C}$ acts with eigenvalues

$$
z^{-n}, z^{-n+2}, \ldots, z^{n-2}, z^{n}
$$

