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for any pair of lett-invariant vector fields

X,Y eg.
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Sectional Curvature in 2-plane II:

K(IT) = g(u, Ryyv)

Lie group G with bi-invariant ¢

K (1)

1 )
ZH[X, Y|
0.

Vv



Ricci Curvature

Ricci tensor of (M, V) defined by

Ric(v,w) = (U —> Rypw)



Ricci Curvature

Ricci tensor of (M, V) defined by

Ric(v, w) := trace (4 —> Rypw)



Ricci Curvature

Ricci tensor of (M, V) defined by

Ric(v, w) := trace (4 —> Rypw)



Ricci Curvature

Ricei tensor of (M, V) defined by
Ric(v, w) := trace (4 —> Rypw)

In pseudo-Riemannian case, symmetric because



Ricci Curvature

Ricei tensor of (M, V) defined by
Ric(v, w) := trace (4 —> Rypw)

In pseudo-Riemannian case, symmetric because

e \/ torsion-free; and



Ricci Curvature
Ricei tensor of (M, V) defined by
Ric(v, w) := trace (4 —> Rypw)

In pseudo-Riemannian case, symmetric because

e \/ torsion-free; and

e J volume form p with V. = 0.



Ricci Curvature
Ricei tensor of (M, V) defined by
Ric(v, w) := trace (4 —> Rypw)

In pseudo-Riemannian case, symmetric because

e \/ torsion-free; and

e J volume form p with V. = 0.

This makes it enough to know Ric(v, v).

Riemannian case: Ric(v,v) for unit vectors v.
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of Lie group G with V bi-invariant, torsion-free:
| 1
Ric(Y,Z) = _ZB(Y’Z>

where Killing form is defined by

B(Y, Z) — tI’(AdZ o Ady) — tI‘(AdY O Adz)



