MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
April 29, 2021

Proposition. Let G be a compact Lie group,

Proposition. Let G be a compact Lie group, let \mathbb{V} be a vector space over \mathbb{R},

Proposition. Let G be a compact Lie group, let \mathbb{V} be a vector space over \mathbb{R}, and let

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

Proposition. Let G be a compact Lie group, let \mathbb{V} be a vector space over \mathbb{R}, and let

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

be a real representation of G . Then there is a positive-definite inner product \langle,$\rangle on \mathbb{V}$ that is invariant under the action of G.

Proposition. Let G be a compact Lie group, let \mathbb{V} be a vector space over \mathbb{R}, and let

$$
\varrho: \mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

be a real representation of G . Then there is a positive-definite inner product \langle,$\rangle on \mathbb{V}$ that is invariant under the action of G. Any such representation can therefore be viewed as a Liegroup homomorphism

Proposition. Let G be a compact Lie group, let \mathbb{V} be a vector space over \mathbb{R}, and let

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

be a real representation of G . Then there is a positive-definite inner product \langle,$\rangle on \mathbb{V}$ that is invariant under the action of G. Any such representation can therefore be viewed as a Liegroup homomorphism

$$
\varrho: \mathbf{G} \rightarrow \mathbf{O}(\mathbb{V},\langle,\rangle) \cong \mathbf{O}(n)
$$

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{R},

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{R}, and

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{R}, and

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

is a real representation of G ,

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{R}, and

$$
\varrho: G \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

is a real representation of G , we say that @ makes \mathbb{V} into a (real) G-module.

Proposition. Let G be a compact Lie group, let \mathbb{V} is a vector space over \mathbb{C},

Proposition. Let G be a compact Lie group, let \mathbb{V} is a vector space over \mathbb{C}, and let

$$
\varrho: \mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

be a complex representation of G .

Proposition. Let G be a compact Lie group, let \mathbb{V} is a vector space over \mathbb{C}, and let

$$
\varrho: G \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

be a complex representation of G . Then there is a positive-definite Hermitian inner product \langle, on \mathbb{V} that is invariant under the action of G .

Proposition. Let G be a compact Lie group, let \mathbb{V} is a vector space over \mathbb{C}, and let

$$
\varrho: \mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

be a complex representation of G . Then there is a positive-definite Hermitian inner product \langle, on \mathbb{V} that is invariant under the action of G . Any such representation can therefore be viewed as a Lie-group homomorphism

Proposition. Let G be a compact Lie group, let \mathbb{V} is a vector space over \mathbb{C}, and let

$$
\varrho: \mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

be a complex representation of G . Then there is a positive-definite Hermitian inner product \langle, on \mathbb{V} that is invariant under the action of G . Any such representation can therefore be viewed as a Lie-group homomorphism

$$
\varrho: G \rightarrow \mathbf{U}(\mathbb{V},\langle,\rangle) \cong \mathbf{U}(n)
$$

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{C}, and

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{C}, and

$$
\varrho: G \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

is a complex representation of G ,

Definition. If G is a Lie group, \mathbb{V} is a vector space over \mathbb{C}, and

$$
\varrho: G \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{C})
$$

is a complex representation of G , we say that ϱ makes \mathbb{V} into a (complex) G-module.

Definition. A real G-module \mathbb{V} is irreducible

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces
$\mathbb{W} \subset \mathbb{V}$

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces

$$
\mathbb{W} \subset \mathbb{V}
$$

are 0 and \mathbb{V}.

Definition. A complex G-module \mathbb{V} is irreducible

Definition. A complex G -module \mathbb{V} is irreducible if the only G-invariant complex vector subspaces

Definition. A complex G -module \mathbb{V} is irreducible if the only G -invariant complex vector subspaces

$$
\mathbb{W} \subset \mathbb{V}
$$

Definition. A complex G -module \mathbb{V} is irreducible if the only G -invariant complex vector subspaces

$$
\mathbb{W} \subset \mathbb{V}
$$

are 0 and \mathbb{V}.

Theorem. Let G be a compact Lie group.

Theorem. Let G be a compact Lie group. Then any real G-module

Theorem. Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules.

Theorem. Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules.

$$
\mathbb{V}=\mathbb{V}_{1} \oplus \cdots \oplus \mathbb{V}_{1}
$$

Theorem. Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules.

$$
\begin{aligned}
\mathbb{V} & =\mathbb{V}_{1} \oplus \cdots \oplus \mathbb{V}_{1} \\
\rho & =\rho_{1} \oplus \cdots \oplus \rho_{k}
\end{aligned}
$$

Theorem. Let G be a compact Lie group. Then any complex G-module is a direct sum of irreducible complex G-modules.

$$
\begin{aligned}
\mathbb{V} & =\mathbb{V}_{1} \oplus \cdots \oplus \mathbb{V}_{1} \\
\rho & =\rho_{1} \oplus \cdots \oplus \rho_{k}
\end{aligned}
$$

Definition. A connected Lie group G is called simple if

Definition. A connected Lie group G is called simple if

- \mathfrak{g} is non-Abelian; and

Definition. A connected Lie group G is called simple if

- \mathfrak{g} is non-Abelian; and
- the adjoint representation G on \mathfrak{g} is irreducible.

Lemma (Schur).

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be G-modules

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be G-modules

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V})
$$

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\begin{aligned}
& \varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V}) \\
& \varrho_{2}: G \rightarrow \mathbf{G L}(\mathbb{W})
\end{aligned}
$$

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\begin{aligned}
& \varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V}) \\
& \varrho_{2}: G \rightarrow \mathbf{G L}(\mathbb{W})
\end{aligned}
$$

and let $\Phi: \mathbb{V} \rightarrow \mathbb{W}$

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\begin{aligned}
& \varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V}) \\
& \varrho_{2}: G \rightarrow \mathbf{G L}(\mathbb{W})
\end{aligned}
$$

and let $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ be a homomorphism of G-modules:

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\begin{aligned}
& \varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V}) \\
& \varrho_{2}: G \rightarrow \mathbf{G L}(\mathbb{W})
\end{aligned}
$$

and let $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ be a homomorphism of
G-modules:

$$
\varrho_{2}(\mathrm{a}) \cdot \Phi(v)=\Phi\left(\varrho_{1}(\mathrm{a}) \cdot v\right) .
$$

Lemma (Schur). Let \mathbb{V} and \mathbb{W} be irreducible G-modules

$$
\begin{aligned}
& \varrho_{1}: G \rightarrow \mathbf{G L}(\mathbb{V}) \\
& \varrho_{2}: G \rightarrow \mathbf{G L}(\mathbb{W})
\end{aligned}
$$

and let $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ be a homomorphism of
G-modules:

$$
\varrho_{2}(\mathrm{a}) \cdot \Phi(v)=\Phi\left(\varrho_{1}(\mathrm{a}) \cdot v\right)
$$

Then either $\Phi=0$, or else Φ is an isomorphism.

Representations of $\mathbf{S U}(2)$

Representations of $\mathbf{S U}(2)$

Theorem.

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n.

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

$$
\mathbb{V}_{n}=\odot^{n} \mathbb{S}
$$

Representations of $\mathbf{S U}(2)$

Theorem. The complex irreducible representations of $\mathbf{S U}(2)$ are classified by the non-negative integers n. For each n, there is, up to isomorphism, a unique irreducible $\mathbf{S U}(2)$-module \mathbb{V}_{n} of dimension $n+1$. This can be expressed in terms of the basic 2-dimensional representation \mathbb{S} as

$$
\mathbb{V}_{n}=\odot^{n} \mathbb{S} .
$$

Here \odot denotes the symmetric tensor product.

