#### MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

April 27, 2021

**Proposition.** Let G be a compact Lie group,

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ 

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

be a real representation of G. Then there is a positive-definite inner product  $\langle , \rangle$  on  $\mathbb{V}$  that is invariant under the action of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

be a real representation of G. Then there is a positive-definite inner product  $\langle , \rangle$  on  $\mathbb{V}$  that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

be a real representation of G. Then there is a positive-definite inner product  $\langle , \rangle$  on  $\mathbb{V}$  that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho: \mathsf{G} \to \mathbf{O}(\mathbb{V}, \langle , \rangle) \cong \mathbf{O}(n).$ 

# **Definition.** If G is a Lie group, $\mathbb{V}$ is a vector space over $\mathbb{R}$ ,

**Definition.** If G is a Lie group,  $\mathbb{V}$  is a vector space over  $\mathbb{R}$ , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

**Definition.** If G is a Lie group,  $\mathbb{V}$  is a vector space over  $\mathbb{R}$ , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

is a real representation of G,

**Definition.** If G is a Lie group,  $\mathbb{V}$  is a vector space over  $\mathbb{R}$ , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$ 

is a real representation of G, we say that  $\varrho$  makes  $\mathbb{V}$  into a (real) G-module.

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{C})$ 

be a complex representation of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$ 

be a complex representation of G. Then there is a positive-definite Hermitian inner product  $\langle , \rangle$ on  $\mathbb{V}$  that is invariant under the action of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$ 

be a complex representation of G. Then there is a positive-definite Hermitian inner product  $\langle , \rangle$ on  $\mathbb{V}$  that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$ 

be a complex representation of G. Then there is a positive-definite Hermitian inner product  $\langle , \rangle$ on  $\mathbb{V}$  that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho:\mathsf{G}\to \mathbf{U}(\mathbb{V},\langle\ ,\ \rangle)\cong \mathbf{U}(n).$ 

# **Definition.** If G is a Lie group, $\mathbb{V}$ is a vector space over $\mathbb{C}$ , and

**Definition.** If G is a Lie group,  $\mathbb{V}$  is a vector space over  $\mathbb{C}$ , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$ 

is a complex representation of G,

**Definition.** If G is a Lie group,  $\mathbb{V}$  is a vector space over  $\mathbb{C}$ , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$ 

is a complex representation of G, we say that  $\varrho$  makes  $\mathbb{V}$  into a (complex) G-module.

#### **Definition.** A real G-module $\mathbb{V}$ is irreducible

 $\mathbb{W} \subset \mathbb{V}$ 

 $\mathbb{W} \subset \mathbb{V}$ 

are 0 and  $\mathbb{V}$ .

 $\mathbb{W} \subset \mathbb{V}$ 

are 0 and  $\mathbb{V}$ .

**Example.** Usual action of  $\mathbf{SO}(n)$  on  $\mathbb{R}^n$ ,

 $\mathbb{W} \subset \mathbb{V}$ 

are 0 and  $\mathbb{V}$ .

**Example.** Usual action of  $\mathbf{SO}(n)$  on  $\mathbb{R}^n$ , because  $\mathbf{SO}(n)$  acts transitively on  $S^{n-1}$ .

**Definition.** A complex G-module  $\mathbb{V}$  is irreducible

are 0 and  $\mathbb{V}$ .

are 0 and  $\mathbb{V}$ .

**Example.** Usual action of  $\mathbf{SU}(n)$  on  $\mathbb{C}^n$ ,

are 0 and  $\mathbb{V}$ .

### **Example.** Usual action of $\mathbf{SU}(n)$ on $\mathbb{C}^n$ , because $\mathbf{SU}(n)$ acts transitively on $S^{2n-1}$ .

are 0 and  $\mathbb{V}$ .

are 0 and  $\mathbb{V}$ .

**Example.** Usual action of  $\mathbf{SO}(n)$  on  $\mathbb{C}^n$ ,  $n \ge 3$ :

are 0 and  $\mathbb{V}$ .

### **Example.** Usual action of $\mathbf{SO}(n)$ on $\mathbb{C}^n$ , $n \ge 3$ : Irreducible over $\mathbb{C}$ , but reducible over $\mathbb{R}$ .

**Theorem.** Let G be a compact Lie group.

**Theorem.** Let G be a compact Lie group. Then a real G-module  $\mathbb{V}$ 



 $\iff$ 

the G-invariant positive-definite inner product  $\langle , \rangle$ 

 $\iff$ 

the G-invariant positive-definite inner product  $\langle \;,\;\rangle$  is unique

 $\iff$ 

the G-invariant positive-definite inner product  $\langle \;,\;\rangle$  is unique up to scale.

**Theorem.** Let G be a compact Lie group.



### $\iff$

the G-invariant Hermitian inner product  $\langle \ , \ \rangle$  is unique

#### $\iff$

the G-invariant Hermitian inner product  $\langle \ , \ \rangle$  is unique up to scale.

**Theorem.** Let G be a compact Lie group.

**Theorem.** Let G be a compact Lie group. Then any real G-module

**Theorem.** Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules. **Theorem.** Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules.

 $\mathbb{V} = \mathbb{V}_1 \oplus \cdots \oplus \mathbb{V}_1$ 

**Theorem.** Let G be a compact Lie group. Then any real G-module is a direct sum of irreducible real G-modules.

$$\mathbb{V} = \mathbb{V}_1 \oplus \cdots \oplus \mathbb{V}_1$$

$$\rho = \rho_1 \oplus \cdots \oplus \rho_k$$

**Theorem.** Let G be a compact Lie group. Then any complex G-module is a direct sum of *irreducible* complex G-modules.

 $\mathbb{V} = \mathbb{V}_1 \oplus \cdots \oplus \mathbb{V}_1$ 

 $\rho = \rho_1 \oplus \cdots \oplus \rho_k$ 

## **Definition.** A connected Lie group G is called simple if

# **Definition.** A connected Lie group G is called simple if

• g is non-Abelian; and

**Definition.** A connected Lie group G is called simple if

- g is non-Abelian; and
- the adjoint representation  ${\sf G}$  on  ${\mathfrak g}$  is irreducible.

Lemma (Schur).

 $\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$ 

 $\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$  $\varrho_2: \mathsf{G} \to \mathbf{GL}(\mathbb{W})$ 

 $\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$  $\varrho_2: \mathsf{G} \to \mathbf{GL}(\mathbb{W})$ 

and let  $\Phi : \mathbb{V} \to \mathbb{W}$ 

 $\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$  $\varrho_2: \mathsf{G} \to \mathbf{GL}(\mathbb{W})$ 

and let  $\Phi : \mathbb{V} \to \mathbb{W}$  be a homomorphism of G-modules:

$$\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$$
$$\varrho_2: \mathsf{G} \to \mathbf{GL}(\mathbb{W})$$

and let  $\Phi : \mathbb{V} \to \mathbb{W}$  be a homomorphism of G-modules:

 $\varrho_2(\mathsf{a}) \cdot \Phi(v) = \Phi(\varrho_1(\mathsf{a}) \cdot v).$ 

$$\varrho_1: \mathsf{G} \to \mathbf{GL}(\mathbb{V})$$
$$\varrho_2: \mathsf{G} \to \mathbf{GL}(\mathbb{W})$$

and let  $\Phi : \mathbb{V} \to \mathbb{W}$  be a homomorphism of G-modules:

 $\varrho_2(\mathsf{a}) \cdot \Phi(v) = \Phi(\varrho_1(\mathsf{a}) \cdot v).$ 

Then either  $\Phi = 0$ , or else  $\Phi$  is an isomorphism.