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Definition. A complex G-module V s irreducible
iof the only G-invariant complex vector subspaces

W CV
are 0 and V.

Example. Usual action of SO(n) on C" n > 3:

Irreducible over C, but reducible over R.
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Theorem. Let G be a compact Lie group.
Then any compler G-module s a direct sum of
wrreducible complexr G-modules.

V=Vi&d---dVy

p=p1D--Dpg
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e the adjoint representation G on g 1s wrreducible.
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Lemma (Schur). Let V and W be irreducible
G-modules

01 : G— GL(V)
09 G— GL(W)

and let © : V — W be a homomorphism of
G-modules:

02(2a) - P(v) = D(o1(a) - v).

Then either ® =0, or else O s an 1somorphism.



