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Definition. A complex G-module V s irreducible
iof the only G-invariant complex vector subspaces

W CV
are 0 and V.

Example. Usual action of SO(n) on C™:

Irreducible over C, but reducible over R.



Theorem. Let G be a compact Lie group. Then
any (real /complex) G-module is a direct sum of
irreducible (real/complex) G-modules.



