MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

April 20, 2021

Proposition. Let G be a compact Lie group,

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$

be a real representation on G. Then there is a positive-definite inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a real representation on G. Then there is a positive-definite inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a *real* representation on G. Then there is a positive-definite inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho: \mathsf{G} \to \mathbf{O}(\mathbb{V}, \langle , \rangle) \cong \mathbf{O}(n).$

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{R} ,

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{R} , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{R} , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

is a real representation on G,

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{R} , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

is a real representation on G, we say that ϱ makes \mathbb{V} into a (real) G-module.

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{C})$

be a complex representation on G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$

be a complex representation on G. Then there is a positive-definite Hermitian inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$

be a complex representation on G. Then there is a positive-definite Hermitian inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$

be a complex representation on G. Then there is a positive-definite Hermitian inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as a Lie-group homomorphism

 $\varrho: \mathsf{G} \to \mathbf{U}(\mathbb{V}, \langle \ , \ \rangle) \cong \mathbf{U}(n).$

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{C} , and

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{C} , and

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{C})$

is a complex representation on G,

Definition. If G is a compact Lie group, \mathbb{V} is a vector space over \mathbb{C} , and

 $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{C})$

is a complex representation on G, we say that ϱ makes \mathbb{V} into a (complex) G-module.

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces

 $\mathbb{W} \subset \mathbb{V}$

are 0 and \mathbb{V} .

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces

 $\mathbb{W} \subset \mathbb{V}$

are 0 and \mathbb{V} .

Example. Usual action of $\mathbf{SO}(n)$ on \mathbb{R}^n ,

Definition. A real G-module \mathbb{V} is irreducible if the only G-invariant real vector subspaces

 $\mathbb{W} \subset \mathbb{V}$

are 0 and \mathbb{V} .

Example. Usual action of $\mathbf{SO}(n)$ on \mathbb{R}^n , because $\mathbf{SO}(n)$ acts transitively on S^{n-1} .

Definition. A complex G-module \mathbb{V} is irreducible if the only G-invariant complex vector subspaces $\mathbb{W} \subset \mathbb{V}$

are 0 and \mathbb{V} .

Example. Usual action of $\mathbf{SU}(n)$ on \mathbb{C}^n , because $\mathbf{SU}(n)$ acts transitively on S^{2n-1} .

Definition. A complex G-module \mathbb{V} is irreducible if the only G-invariant complex vector subspaces $\mathbb{W} \subset \mathbb{V}$

are 0 and \mathbb{V} .

Example. Usual action of $\mathbf{SO}(n)$ on \mathbb{C}^n :

Irreducible over \mathbb{C} , but reducible over \mathbb{R} .

Theorem. Let G be a compact Lie group. Then any (real /complex) G-module is a direct sum of *irreducible* (real/complex) G-modules.