MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

April 15, 2021

Killing form B is negative-definite.

 \iff

Theorem. Let G be a connected Lie group. Then G is compact and $\mathfrak{z}(\mathfrak{g}) = \mathbf{0}$ \iff Killing form B is negative-definite.

Recall, Killing form is defined by

 $B(X,Y) = \operatorname{tr}(Ad_X \circ Ad_Y)$

Killing form B is negative-definite.

 \iff

Corollary. If G is any compact Lie group for which $\mathfrak{z}(\mathfrak{g}) = 0$, then the fundamental group $\pi_1(G)$ is finite.

Theorem. If G is any compact Lie group, then G is finitely covered by

 $\mathbb{T}^k\times\widetilde{\mathsf{G}}$

for some $k \geq 0$, where $\widetilde{\mathsf{G}}$ is a compact simplyconnected Lie group with Lie algebra $\widetilde{\mathfrak{g}} = \mathfrak{g}/\mathfrak{z}$.

of Lie group ${\sf G}$ with ${\boldsymbol \nabla}$ bi-invariant, torsion-free:

$$\operatorname{Ric}(Y,Z) = -\frac{1}{4}B(Y,Z)$$

of Lie group G with ∇ bi-invariant, torsion-free:

$$\operatorname{Ric}(Y,Z) = -\frac{1}{4}B(Y,Z)$$

where Killing form is defined by

 $B(Y,Z) = \operatorname{tr}(Ad_Z \circ Ad_Y) = \operatorname{tr}(Ad_Y \circ Ad_Z)$

For **G** Lie group with bi-invariant g,

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

for some positive constant C.

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

for some positive constant C.

Converse is also true!

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > 0$

Converse is also true!

Proposition. Let G be a connected Lie group.

 \exists bi-invariant g with Ric > 0.

 \exists bi-invariant g with Ric > 0.

Riemannian context:

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

for some constant C > 0.

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

for some constant C > 0. Then M is compact.

 \exists bi-invariant g with Ric > 0.

Killing form B is negative-definite.

 \iff

Theorem. Let G be a connected Lie group. Then G is compact and $\mathfrak{z}(\mathfrak{g}) = \mathbf{0}$

Killing form B is negative-definite.

$$\Leftarrow$$
: Take $g = -B$.