MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

April 13, 2021

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

• $ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

•
$$ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$$

For any Lie group **G** with bi-invariant metric g

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

•
$$ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$$

For any Lie group ${\sf G}$ with bi-invariant metric ${\it g}$ $\nabla_X Y = \frac{1}{2} [X,Y]$

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

•
$$ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$$

For any Lie group **G** with bi-invariant metric g

$$\nabla_X Y = \frac{1}{2} [X, Y]$$

for any pair of left-invariant vector fields

$$X, Y \in \mathfrak{g}.$$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For any Lie group **G** with bi-invariant metric g

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For any Lie group ${\sf G}$ with bi-invariant metric ${\it g}$ ${\cal R}_{XY}Z\,=\,\frac{1}{4}[Z,[X,Y]]$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For any Lie group G with bi-invariant metric g $\mathcal{R}_{XY}Z = -\frac{1}{4}[[X,Y],Z]$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For Lie group G with torsion-free bi-invariant ∇ $\mathcal{R}_{XY}Z = -\frac{1}{4}[[X,Y],Z]$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For any Lie group G with bi-invariant metric g $\mathcal{R}_{XY}Z = -\frac{1}{4}[[X,Y],Z]$

$$\mathcal{R}_{uv}w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

For any Lie group G with bi-invariant metric g $\mathcal{R}_{XY}Z = -\frac{1}{4}[[X,Y],Z]$

Now assume that (M, g) Riemannian.

Now assume that (M, g) Riemannian.

Let u, v be orthonormal

$$\boldsymbol{g}(u,u) = \boldsymbol{g}(v,v) = 1, \quad \boldsymbol{g}(u,v) = 0$$

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and $\Pi = \operatorname{span}(u, v)$.

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and $\Pi = \operatorname{span}(u, v)$.

Sectional Curvature in 2-plane Π :

 $K(\Pi) = g(u, \mathcal{R}_{uv}v)$

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and $\Pi = \operatorname{span}(u, v)$.

Sectional Curvature in 2-plane Π :

 $K(\Pi) = g(u, \mathcal{R}_{uv}v)$

Lie group **G** with bi-invariant g

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and $\Pi = \operatorname{span}(u, v)$.

Sectional Curvature in 2-plane Π :

 $K(\Pi) = g(u, \mathcal{R}_{uv}v)$

Lie group **G** with bi-invariant g

 $K(\Pi) = \frac{1}{4} \| [X, Y] \|^2$

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and $\Pi = \operatorname{span}(u, v)$.

Sectional Curvature in 2-plane Π :

 $K(\Pi) = g(u, \mathcal{R}_{uv}v)$

Lie group **G** with bi-invariant g

$$\frac{K(\Pi) = \frac{1}{4} \| [X, Y] \|^2}{\geq 0.}$$

Ricci tensor of (M, ∇) defined by

$$\mathsf{Ric}(v,w) := \qquad (u \longmapsto \mathcal{R}_{uv}w)$$

Ricci tensor of (M, ∇) defined by

$$\operatorname{Ric}(v,w) := \operatorname{trace}(u \longmapsto \mathcal{R}_{uv}w)$$

Ricci tensor of (M, ∇) defined by

$$\operatorname{Ric}(v,w) := \operatorname{trace}(u \longmapsto \mathcal{R}_{uv}w)$$

Ricci tensor of (M, ∇) defined by

$$\operatorname{Ric}(v,w) := \operatorname{trace}(u \longmapsto \mathcal{R}_{uv}w)$$

In pseudo-Riemannian case, symmetric because

Ricci tensor of (M, ∇) defined by

$$\operatorname{Ric}(v,w) := \operatorname{trace}(u \longmapsto \mathcal{R}_{uv}w)$$

In pseudo-Riemannian case, symmetric because
▼ torsion-free; and

Ricci tensor of (M, ∇) defined by

$$\mathsf{Ric}(v,w) := \mathsf{trace} \ (u \longmapsto \mathcal{R}_{uv}w)$$

In pseudo-Riemannian case, symmetric because

- ∇ torsion-free; and
- \exists volume form μ with $\nabla \mu = 0$.

Ricci tensor of (M, ∇) defined by

$$\operatorname{Ric}(v,w) := \operatorname{trace}(u \longmapsto \mathcal{R}_{uv}w)$$

In pseudo-Riemannian case, symmetric because

- ∇ torsion-free; and
- \exists volume form μ with $\nabla \mu = 0$.

This makes it enough to know Ric(v, v).

Riemannian case: Ric(v, v) for unit vectors v.

of Lie group **G** with bi-invariant **g**:

of Lie group ${\sf G}$ with ${\boldsymbol \nabla}$ bi-invariant, torsion-free:

of Lie group ${\sf G}$ with ${\boldsymbol \nabla}$ bi-invariant, torsion-free:

$$\operatorname{Ric}(Y,Z) = -\frac{1}{4}B(Y,Z)$$

of Lie group G with ∇ bi-invariant, torsion-free:

$$\operatorname{Ric}(Y,Z) = -\frac{1}{4}B(Y,Z)$$

where Killing form is defined by

 $B(Y,Z) = \operatorname{tr}(Ad_Z \circ Ad_Y) = \operatorname{tr}(Ad_Y \circ Ad_Z)$

For **G** Lie group with bi-invariant g,

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

for some positive constant C.

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > Cg$

for some positive constant C.

Converse is also true!

For **G** Lie group with bi-invariant g,

 $\mathsf{Ric}(X,X) \ge 0,$

with $= \iff X \in \mathfrak{z}(\mathfrak{g})$, center of \mathfrak{g} .

So if **G** compact Lie group with $\mathfrak{z}(\mathfrak{g}) = 0$, any biinvariant metric g satisfies

 $\operatorname{Ric} > 0$

Converse is also true!

Proposition. Let G be a connected Lie group.

 \exists bi-invariant g with Ric > 0.

 \exists bi-invariant g with Ric > 0.

Riemannian context:

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

for some constant C > 0.

 \exists bi-invariant g with Ric > 0.

Riemannian context:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold such that

 $\operatorname{Ric} \geq Cg$

for some constant C > 0. Then M is compact.

 \exists bi-invariant g with Ric > 0.

Killing form B is negative-definite.

 \iff

Theorem. Let G be a connected Lie group. Then G is compact and $\mathfrak{z}(\mathfrak{g}) = \mathbf{0}$ \iff Killing form B is negative-definite.

Recall, Killing form is defined by

 $B(X,Y) = \operatorname{tr}(Ad_X \circ Ad_Y)$

Killing form B is negative-definite.

 \iff

Theorem. Let G be a connected Lie group. Then G is compact and $\mathfrak{z}(\mathfrak{g}) = \mathbf{0}$

Killing form B is negative-definite.

$$\Leftarrow$$
: Take $g = -B$.

Killing form B is negative-definite.

 \iff

Corollary. If G is any compact Lie group for which $\mathfrak{z}(\mathfrak{g}) = 0$, then the fundamental group $\pi_1(G)$ is finite.