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Theorem.Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
such that

• ∇vw −∇wv = [v, w]; and

• ug(v, w) = g(∇uv, w) + g(v,∇uw).

For any Lie group G with bi-invariant metric g

∇XY =
1

2
[X,Y ]

for any pair of left-invariant vector fields

X,Y ∈ g.
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Now assume that (M, g) Riemannian.

Let u, v be orthonormal

g(u, u) = g(v, v) = 1, g(u, v) = 0
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Sectional Curvature

Now assume that (M, g) Riemannian.

Let u, v be orthonormal, and Π = span(u, v).

Sectional Curvature in 2-plane Π:

K(Π) = g(u,Ruvv)

Lie group G with bi-invariant g

K(Π) =
1

4
‖[X,Y ]‖2

≥ 0.
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Ricci Curvature

Ricci tensor of (M,∇) defined by

Ric(v, w) := trace (u 7−→ Ruvw)

In pseudo-Riemannian case, symmetric because

• ∇ torsion-free; and

• ∃ volume form µ with ∇µ = 0.

This makes it enough to know Ric(v, v).

Riemannian case: Ric(v, v) for unit vectors v.
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of Lie group G with bi-invariant g:

31



Ricci Curvature

of Lie group G with ∇ bi-invariant, torsion-free:
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Ricci Curvature

of Lie group G with ∇ bi-invariant, torsion-free:

Ric(Y , Z) = −1

4
B(Y , Z)
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Ricci Curvature

of Lie group G with ∇ bi-invariant, torsion-free:

Ric(Y , Z) = −1

4
B(Y , Z)

where Killing form is defined by

B(Y , Z) = tr(AdZ ◦ AdY ) = tr(AdY ◦ AdZ)
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Ricci Curvature

For G Lie group with bi-invariant g,

Ric(X,X) ≥ 0,

with = ⇐⇒ X ∈ z(g), center of g.

So if G compact Lie group with z(g) = 0, any bi-
invariant metric g satisfies

Ric > 0

for some positive constant C.

Converse is also true!
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Theorem. Let G be a connected Lie group.
Then G is compact and z(g) = 0

⇐⇒
Killing form B is negative-definite.

Recall, Killing form is defined by

B(X,Y ) = tr(AdX ◦ AdY )
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Theorem. Let G be a connected Lie group.
Then G is compact and z(g) = 0

⇐⇒
Killing form B is negative-definite.

⇐=: Take g = −B.
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Theorem. Let G be a connected Lie group.
Then G is compact and z(g) = 0
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Corollary. If G is any compact Lie group for
which z(g) = 0, then the fundamental group π1(G)
is finite.
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