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Definition. A Riemannian metric g on a smooth
manifold M 1s a smooth symmetric tensor field

g € C®(O*T* M)
which defines a positive-definite inner product
on each tangent space TpM :

v#0 = g(v,v)>0.



For any piece-wise smooth path
v la, b — M
in (M, g) we define its length to be

b
L) = [ 10l dt

We say that v is a path from p to ¢ it

Y(a)=p and ~(b) =g
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Definition. Let (M, g) be a connected Rieman-
nian manifold. For any p,q € M we define

dist(p, q) = inf{ L(v) | v piece-wise smooth path from p to q}

Proposition. This definition makes (M , dist) into
a metric space.



Theorem. Let g be a Riemannian metric on M .

Then M admits a unique affine connection V
such that

o Vyw — Vv = |v,w|; and

¢ Ug(’U, UJ) — g(vuva UJ) + g(?}, vuw)
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Definition. A parameterized curve
v (a,b) > M

in a Riemannian manifold (M, g) is said to be a
geodesic if

V,Y/V, =0
for every t € (a,b), where ¥V denotes the
Riemannian connection determined by g.
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g be a bi-invariant metric.

Let X be a left-invariant vector field on G.
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VxY =3X,Y] VXY €q
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Example. Let G be a compact Lie group, and let
g be a bi-invariant metric.

Let X be a left-invariant vector field on G.

Then Vx X = %[X,X] = (), since
1
VxY =3X,Y] VXY €q

Hence any flow-line of X is a geodesic of g.

In particular, the curves
t — exp(tX)

are exactly the geodesics through e.

These are the “one-parameter subgroups” of G.



Let (M, g) be a Riemannian n-manifold, p € M.



Let (M, g) be a Riemannian n-manifold, p € M.
Metric defines preferred curves, called geodesics.
Following geodesics from p defines a map

exp : IpM --» M



Let (M, g) be a Riemannian n-manifold, p € M.
Metric defines preferred curves, called geodesics.
Following geodesics from p defines a map

exp : IpM --» M
which is at least defined in a neighborhood of 0:




Let (M, g) be a Riemannian n-manifold, p € M.
Metric defines preferred curves, called geodesics.
Following geodesics from p defines a map

exp : IpM --» M
which is at least defined in a neighborhood of 0:

This is a diffeomorphism on a neighborhhood of 0.



Let (M, g) be a Riemannian n-manifold, p € M.
Metric defines preferred curves, called geodesics.
Following geodesics from p defines a map

exp : IpM --» M
which is at least defined in a neighborhood of 0:

This is a diffeomorphism on a neighborhhood of 0.

For G with bi-invariant g, equals Lie-theoretic exp.
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Definition. A Riemannian manifold (M, g) is
called geodesically complete if

exp: IT'M — M

i1s defined on the entire tangent bundle.
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Theorem (Hopf-Rinow). For (M, g) connected
Riemannian manifold, the following are equiv-
alent:

o (M, dist) is a complete metric space;

o (M, q) is a geodesically complete;

o (M, q) is a geodesically complete at some p.
Moreover, any of these conditions implies

e cvery pair of points p,q € M 1s joined by a
geodesic segment

v la, b — M
of length L(~) = dist(p, q).
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Corollary. Let M be a compact connected man-
ifold, g any Riemannian metric on M. Then,
Vpe M,

exp : IpM — M

s globally-defined and surjective.



Corollary. Let G be a compact connected Lie
group. Then
exp:g— G

1S surjective.



Corollary. Let G be a compact connected Lie
group. Then

exp:g— G

1S surjective.

Corollary. Let G be a connected Lie group. If

G admits a bi-invariant Riemannian metric g,
then

exp:g— G

1S surjective.
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