
Homework # 3

MAT 552

Optional Problems for Further Explorations.

These problems will not be graded, or even collected!

1. The compact Lie group SU(2) acts on its own Lie algebra su(2) ∼= (R3,×)
via the adjoint action. Show that the transformations that arise in this way
can all be viewed as orthogonal transformations of R3. Use this to give a
different proof of the fact that SU(2) ∼= Sp(1) is the universal cover of SO(3).

2. Recall that we can embed U(1) ≈ S1 as a Lie subgroup of SU(2) by

ζ 7→
[
ζ

ζ−1

]
∀ζ ∈ U(1) ⊂ C− {0}.

(a) Use problem 1 to show that any other Lie-group embedding

U(1) ↪→ SU(2)

is obtained from the above embedding by conjugation in SU(2).

(b) Show that it is impossible to embed U(1) × U(1) in SU(2) as a Lie
subgroup. Thus, U(1) is the maximal torus of SU(2), in the sense that it is
the highest-dimensional Lie subgroup that is a product of circles U(1).

(c) Observe that T2 ≈ U(1)×U(1) can nonetheless be embedded in SU(2)
as a submanifold. Thus, the maximal torus only has maximal dimension
among compact Abelian Lie subgroups, not among embedded submanifolds.
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3. Let G be a compact connected Abelian Lie group of real dimension n.
Show that the exponential map from g ∼= Rn to G is both a Lie group
homomorphism and a covering map, and that its kernel is a lattice Λ ⊂ Rn,
meaning a discrete additive subgroup that spans Rn. Then show any lattice
Λ in Rn is exactly the subgroup generated over Z by some basis for Rn. Then
use this to show that G is isomorphic to the n-torus

Tn = U(1)× · · · ×U(1)︸ ︷︷ ︸
n

as a Lie group. As a corollary, deduce that the quotient of Tn by any finite
subgroup is again isomorphic to Tn.

4. Let G be a compact Lie group with Lie algebra g. Let X ∈ g be any
element, let exp(RX) be the image of the span of X under the exponential
map, and let exp(RX) denote its closure. Prove that exp(RX) is a compact
connected Abelian subgroup of G.

It is a highly non-trivial theorem1 that any closed subgroup of a Lie group
is a Lie group. Using this fact and Problem 2, conclude that expRX must
be isomorphic to a torus Tn for some n.

Conversely, if G contains a Lie subgroup isomorphic to Tn for some n, show
that this subgroup arises as expRX for some X ∈ g.

5. Let ρ : SU(2) → End(V) be a complex representation. Recall that we
can then decompose V into 1-complex-dimensional subspaces, each of which
is an eigenspace for the action of U(1) ⊂ SU(2), and that we say that such
an eigenspace has weight n if every ζ ∈ U(1) acts on it with eigenvalue ζn.
The highest weight of the given representation is then the largest integer n
that occurs as the weight of some (non-zero) eigenspace.

If dimC V = n + 1, show that ρ is an irreducible complex representation if
only if it is has highest weight n.

If S = C2 is the “defining” representation of SU(2), show that the induced
action on the symmetric product �nS has weight n. Also check that �nS
has dimension n+1 by writing down as basis. Conclude that �nS is actually
an irreducible representation of SU(2).

1See, for example, Duistermaat and Kolk, Lie Groups, Corollary 1.10.7.
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6. Show that the maximal torus of SO(3) is the image of the obvious inclusion

SO(2) ↪→ SO(3)[
cos θ − sin θ
sin θ cos θ

]
7→

 1
cos θ − sin θ
sin θ cos θ


and that this circle is double-covered by the maximal torus U(1) of SU(2).

One may classify irreducible complex representations of SO(3) by breaking
them into eigenspaces of the action of SO(2), and then extracting an integer,
called the spin, which is the “largest eigenvalue” of all these circle actions.
This definition of the spin of an SO(3)-representation was introduced by
physicists in the early days of quantum mechanics, and is exactly twice the
highest weight for the corresponding representation of SU(2). This led to the
perplexing discovery that there are also “half-integer spin” representations
of the Lie algebra so(3), which actually arise from representations of the
universal cover SU(2) of SO(3). Physicists therefore still describe irreducible
representations of SU(2) by saying that the one of highest weight n has spin
n/2. This terminology also helps explain why the universal cover of SO(m),
m ≥ 3, is known as Spin(m), even in pure mathematics.

Let V = R3 be the tautological real representation of SO(3), and let VC = C3

be its complexification. Let �m0 V∗ be the totally-symmetric trace-free tensors
on V, so that an element φ is a multi-linear map satisfying

φ(v1, v2, . . . , vm) = φ(vσ(1), vσ(2), . . . , vσ(m)) ∀σ ∈ Sm, vj ∈ V,

and
3∑
i=1

φ(ei, ei, v3, . . . , vm) = 0 ∀v3, . . . , vm ∈ V,

where ei is the usual orthonormal basis for V = R3. Prove that this space
has dimension 2m+ 1, and that its complexification �mVC has spin m as an
SO(3) representation. Since �mVC therefore has highest weight 2m as an
SU(2) representation, and since its dimension is 2m+ 1, conclude that it is
irreducible as a complex representation of SU(2). Also observe that while
this this complex representation is certainly reducible as a real representation,
because it can be written as [�m0 V] ⊕ i[�m0 V∗], the real representation �m0 V
is necessarily irreducible as a real representation.
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7. The universal cover Spin(4) of SO(4) is isomorphic to Sp(1) × Sp(1),
because there is a natural double cover Sp(1)× Sp(1)→ SO(4) that arises
by letting a pair of unit-norm quaternions (q1, q2) ∈ Sp(1) × Sp(1) act on
quaternions a ∈ H = R4 by

a 7→ q1aq
−1
2 .

Show that the maximal torus of SO(4) is exactly the image of the obvious
embedding SO(2) × SO ↪→ SO(4), but that this 2-torus is double-covered
by the maximal torus U(1)×U(1) of Sp(1)×Sp(1). Show that this implies
that complex irreducible representations of Spin(4) = Sp(1) × Sp(1) are
classified (up to isomorphism) by pairs (m,n) of non-negative integers, and
that such a representation arises from an SO(4)-representation if and only if
m ≡ n mod 2. The pair (m,n) associated with an irreducible representation
is called the representation’s highest weight.

8. Let V = C4 be the “defining” representation of SU(4), and consider the
induced actions of SU(4) on Λ2V ∼= C6 and Λ4V ∼= C. Since the latter
is trivial, show that the wedge product Λ2V × Λ2V → Λ4V defines a non-
degenerate symmetric complex-bilinear inner product that is invariant under
SU(4). By diagonalizing this complex inner product with respect to an
invariant Hermitian inner product, show that there is an SU(4)-invariant
real subspace W ⊂ Λ2V such that Λ2V = W ⊕ iW. Now use this to prove
that SU(4) is a double cover of SO(6), and is therefore isomorphic to its
universal cover Spin(6). Finally, carefully examine the Dynkin diagrams A3

and B3 of su(4) and so(6), and observe that these are actually the same.

9. Recall that Sp(n) is the exactly the subgroup of SU(2n) that preserves a
specific complex-symplectic form Ω ∈ Λ2(C2n)∗. Using this, show that when
the action off SU(4) on Λ2V ∼= C6 is restricted to Sp(2), it becomes reducible:
there is a direct-sum decomposition Λ2V ∼= C ⊕ C5 that is invariant under
Sp(2). Then use this to show that there is an induced invariant direct-sum
decomposition W ∼= R ⊕ R5. Then use this to prove that Sp(2) is a double
cover of SO(5), and is therefore isomorphic to its universal cover Spin(5).
Finally, carefully examine the Dynkin diagrams B2 and C2 of so(5) and sp(2),
and observe that these are actually the same.

10. Explicitly describe the maximal tori of SO(5), SO(6), SU(3), SU(4),
and Sp(2). Then explictly find the weights of their adjoint representations,
and explain how these give rise to the corresponding Dynkin diagrams.
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