MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

March 9, 2021

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

$$\begin{array}{rrrr} L_{\mathsf{a}}:\mathsf{G} & \to & \mathsf{G} \\ & \mathsf{b} & \mapsto \mathsf{ab} \end{array}$$

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}{}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}^{*}\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

$$\begin{array}{rrrr} R_{\mathsf{a}}:\mathsf{G} & \to & \mathsf{G} \\ & \mathsf{b} & \mapsto \mathsf{ba} \end{array}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}{}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}{}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• *bi-invariant* if it is both *left- and right-invariant*.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^\ell T_{\mathsf{e}}^*\mathsf{G})$

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

Proof. One can carry any given tensor at **e** to any $\mathbf{a} \in \mathbf{G}$ by $L_{\mathbf{a}} : T_{\mathbf{e}}\mathbf{G} \to T_{a}\mathbf{G}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k \mathfrak{g}) \otimes (\otimes^\ell \mathfrak{g}^*)$

 $\varphi \in (\otimes^k T_{\mathbf{e}} \mathbf{G}) \otimes (\otimes^{\ell} T_{\mathbf{e}}^* \mathbf{G})$

which are invariant under the adjoint action of G on T_eG :

 $Ad_{\mathsf{a}}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}.$

 $\varphi \in (\otimes^k T_{\mathbf{e}} \mathbf{G}) \otimes (\otimes^{\ell} T_{\mathbf{e}}^* \mathbf{G})$

which are invariant under the adjoint action of G on T_eG :

$$Ad_{\mathsf{a}}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}.$$

$$Ad_{\mathsf{a}}^{*}\varphi = R_{\mathsf{a}^{-1}}^{*}L_{\mathsf{a}}^{*}\varphi$$

Theorem. Let G be any compact connected Lie group of real dimension n. Then the space of bi-invariant n-forms $\mu \in \Omega^n(G)$ on G is onedimensional. Moreover, there is a unique biinvariant n-form $\mu \in \Omega^n(G)$ such that

$$\int_{\mathsf{G}} \mu = 1.$$

Theorem. Let G be any compact Lie group. Then G carries a unique bi-invariant smooth measure $|\mu|$ such that

$$\int_{\mathsf{G}} |\boldsymbol{\mu}| = 1.$$

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}$$

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}|$$

where $f = \overline{f}$ if f constant.

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}|$$

where $f = \overline{f}$ if f constant.

Notice this is a "projection," in this sense that

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}|$$

where $f = \overline{f}$ if f constant.

Notice this is a "projection," in this sense that

$$\overline{\overline{f}} = \overline{f}$$

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}|$$

where $f = \overline{f}$ if f constant.

Notice this is a "projection," in this sense that

$$\overline{\overline{f}} = \overline{f}$$

and that, for any $b \in G$,

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}$$

where $f = \overline{f}$ if f constant.

Notice this is a "projection," in this sense that

$$\overline{\overline{f}} = \overline{f}$$

and that, for any $b \in G$,

$$\overline{L_{\mathsf{b}}^* f} = \int_{\mathsf{G}} (L_{\mathsf{b}}^* f) |\boldsymbol{\mu}| = \int_{\mathsf{G}} L_{\mathsf{b}}^* (f|\boldsymbol{\mu}|) = \int_{\mathsf{G}} f|\boldsymbol{\mu}| = \overline{f}$$

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}|$$

where $f = \overline{f}$ if f constant.

Notice this is a "projection," in this sense that

$$\overline{\overline{f}} = \overline{f}$$

and that, for any $b \in G$,

$$\overline{R_{\mathsf{b}}^* f} = \int_{\mathsf{G}} (R_{\mathsf{b}}^* f) |\boldsymbol{\mu}| = \int_{\mathsf{G}} R_{\mathsf{b}}^* (f |\boldsymbol{\mu}|) = \int_{\mathsf{G}} f |\boldsymbol{\mu}| = \overline{f}$$

because $R_{\mathsf{b}}^* |\boldsymbol{\mu}| = |\boldsymbol{\mu}|.$

Average vector-valued function $f: \mathbf{G} \to \mathbb{R}^n$ by

$$\overline{f} := \int_{\mathsf{G}} f|\boldsymbol{\mu}| \in \mathbb{R}^n$$

where integral taken component-by-component, so

$$\overline{(f_1,\ldots,f_n)} = (\overline{f_1},\ldots,\overline{f_n}).$$

If $f : \mathbf{G} \to \mathbb{V}$ is a continuous vector-space-valued function, can similarly define its average by

$$\overline{f} = \int_{\mathsf{G}} f|\boldsymbol{\mu}$$

and this coincides with the \mathbb{R}^n -valued case relative to any basis for \mathbb{V} .

Definition. *If* G *is a Lie group, and if* \mathbb{V} *is vector space, a Lie-group homomorphism* $\varrho: G \to \mathbf{GL}(\mathbb{V})$

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $\varrho: \mathbf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ **Definition.** If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $\varrho: \mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$

is said to be a representation of G on \mathbb{V} .

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$,

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$, and set

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|.$$

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$, and set

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|.$$

Then

$$\varrho(\mathsf{b})(\overline{\varphi}) = \overline{\varphi} \quad \forall \mathsf{b} \in \mathsf{G}.$$

 $\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|_{\mathsf{a}}$

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|_{\mathsf{a}}$$
$$\varrho(\mathsf{b})(\overline{\varphi}) = \varrho(\mathsf{b}) \left(\int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|_{\mathsf{a}} \right)$$

$$\overline{\varphi} = \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a}$$
$$\varrho(b)(\overline{\varphi}) = \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right)$$
$$= \int_{a \in G} \varrho(b)\varrho(a)(\varphi) |\mu|_{a}$$

$$\overline{\varphi} = \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a}$$
$$\varrho(b)(\overline{\varphi}) = \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right)$$
$$= \int_{a \in G} \varrho(b)\varrho(a)(\varphi) |\mu|_{a}$$
$$= \int_{a \in G} \varrho(ba)(\varphi) |\mu|_{a}$$

$$\overline{\varphi} = \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a}$$
$$\varrho(b)(\overline{\varphi}) = \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right)$$
$$= \int_{a \in G} \varrho(b)\varrho(a)(\varphi) |\mu|_{a}$$
$$= \int_{a \in G} \varrho(ba)(\varphi) |\mu|_{a}$$
$$= \int_{ba \in G} \varrho(ba)(\varphi) L_{b-1}^{*} |\mu|_{ba}$$

$$\begin{split} \overline{\varphi} &= \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \\ \varrho(b)(\overline{\varphi}) &= \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right) \\ &= \int_{a \in G} \varrho(b) \varrho(a)(\varphi) |\mu|_{a} \\ &= \int_{a \in G} \varrho(ba)(\varphi) |\mu|_{a} \\ &= \int_{a \in G} \varrho(ba)(\varphi) |L_{b-1}^{*}|\mu|_{ba} \\ &= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) |L_{b-1}^{*}|\mu|_{\hat{a}} \end{split}$$

$$\begin{split} \overline{\varphi} &= \int_{a \in G} \varrho(a)(\varphi) \ |\mu|_{a} \\ \varrho(b)(\overline{\varphi}) &= \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) \ |\mu|_{a} \right) \\ &= \int_{a \in G} \varrho(b) \varrho(a)(\varphi) \ |\mu|_{a} \\ &= \int_{a \in G} \varrho(ba)(\varphi) \ |\mu|_{a} \\ &= \int_{ba \in G} \varrho(ba)(\varphi) \ L_{b-1}^{*} |\mu|_{ba} \\ &= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) \ L_{b-1}^{*} |\mu|_{\hat{a}} \\ &= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) \ |\mu|_{\hat{a}} \end{split}$$

$$\overline{\varphi} = \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a}$$

$$\varrho(b)(\overline{\varphi}) = \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right)$$

$$= \int_{a \in G} \varrho(b)\varrho(a)(\varphi) |\mu|_{a}$$

$$= \int_{a \in G} \varrho(ba)(\varphi) |\mu|_{a}$$

$$= \int_{ba \in G} \varrho(ba)(\varphi) L_{b-1}^{*} |\mu|_{ba}$$

$$= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) L_{b-1}^{*} |\mu|_{\hat{a}}$$

$$= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) |\mu|_{\hat{a}}$$

$$= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) |\mu|_{\hat{a}}$$

$$\begin{split} \overline{\varphi} &= \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \\ \varrho(b)(\overline{\varphi}) &= \varrho(b) \left(\int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \right) \\ &= \int_{a \in G} \varrho(b) \varrho(a)(\varphi) |\mu|_{a} \\ &= \int_{a \in G} \varrho(ba)(\varphi) |\mu|_{a} \\ &= \int_{ba \in G} \varrho(ba)(\varphi) L_{b-1}^{*} |\mu|_{ba} \\ &= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) L_{b-1}^{*} |\mu|_{\hat{a}} \\ &= \int_{\hat{a} \in G} \varrho(\hat{a})(\varphi) |\mu|_{\hat{a}} \\ &= \int_{\hat{a} \in G} \varrho(a)(\varphi) |\mu|_{\hat{a}} \\ &= \int_{a \in G} \varrho(a)(\varphi) |\mu|_{a} \\ &= \overline{\varphi} \end{split}$$

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$, and set

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|.$$

Then

$$\varrho(\mathsf{b})(\overline{\varphi}) = \overline{\varphi} \quad \forall \mathsf{b} \in \mathsf{G}.$$

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$, and set

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|.$$

Then

$$\varrho(\mathsf{b})(\overline{\varphi}) = \overline{\varphi} \quad \forall \mathsf{b} \in \mathsf{G}.$$

This produces $\overline{\varphi}$ invariant under the action of **G**.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})$

be a representation on G. Let $\varphi \in \mathbb{V}$, and set

$$\overline{\varphi} = \int_{\mathsf{a}\in\mathsf{G}} \varrho(\mathsf{a})(\varphi) \ |\boldsymbol{\mu}|.$$

Then

$$\varrho(\mathsf{b})(\overline{\varphi}) = \overline{\varphi} \quad \forall \mathsf{b} \in \mathsf{G}.$$

This produces $\overline{\varphi}$ invariant under the action of **G**.

Warning: This process often yields $\overline{\varphi} = 0!$

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a representation on G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a representation on G. Then there is a positive-definite inner product $\langle \ , \ \rangle$ on \mathbb{V}

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a representation on G. Then there is a positive-definite inner product $\langle \ , \ \rangle$ on $\mathbb V$ that is invariant under the action of G.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a representation on G. Then there is a positivedefinite inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as

 $\varrho: \mathsf{G} \to \mathbf{O}(\mathbb{V}, \langle , \rangle) \cong \mathbf{O}(n).$

Proof. Let $\varphi = (,)$ be some given positivedefinite inner product on \mathbb{V} , **Proof.** Let $\varphi = (,)$ be some given positivedefinite inner product on \mathbb{V} , and consider the representation induced by ϱ on $\odot^2 \mathbb{V}^*$.

$$\langle \ , \ \rangle = \int_{\mathsf{a}\in\mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(\ , \) \ |\boldsymbol{\mu}|$$

$$\langle \ , \ \rangle = \int_{\mathsf{a} \in \mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(\ , \) \ |\boldsymbol{\mu}|$$

But now

$$\langle , \rangle = \int_{\mathsf{a}\in\mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(,) |\boldsymbol{\mu}|$$

But now

$$\langle v, v \rangle = \int_{\mathsf{a} \in \mathsf{G}} (\varrho(\mathsf{a}^{-1})v, \varrho(\mathsf{a}^{-1})v) |\boldsymbol{\mu}|$$

$$\langle , \rangle = \int_{\mathsf{a}\in\mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(,) |\boldsymbol{\mu}|$$

But now

$$\langle v, v \rangle = \int_{\mathsf{a} \in \mathsf{G}} (\varrho(\mathsf{a}^{-1})v, \varrho(\mathsf{a}^{-1})v) |\boldsymbol{\mu}|$$

is positive for any for any $v \neq 0$,

$$\langle , \rangle = \int_{\mathsf{a}\in\mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(,) |\boldsymbol{\mu}|$$

But now

$$\langle v, v \rangle = \int_{\mathsf{a} \in \mathsf{G}} (\varrho(\mathsf{a}^{-1})v, \varrho(\mathsf{a}^{-1})v) |\boldsymbol{\mu}|$$

is positive for any for any $v \neq 0$, because the integrand is positive.

$$\langle , \rangle = \int_{\mathsf{a}\in\mathsf{G}} [\varrho(\mathsf{a}^{-1})]^*(,) |\boldsymbol{\mu}|$$

But now

$$\langle v, v \rangle = \int_{\mathsf{a} \in \mathsf{G}} (\varrho(\mathsf{a}^{-1})v, \varrho(\mathsf{a}^{-1})v) |\boldsymbol{\mu}|$$

is positive for any for any $v \neq 0$, because the integrand is positive. This shows that \langle , \rangle is actually positive definite.

 $\varrho:\mathsf{G}\to\mathbf{GL}(\mathbb{V})\cong\mathbf{GL}(n,\mathbb{R})$

be a representation on G. Then there is a positivedefinite inner product \langle , \rangle on \mathbb{V} that is invariant under the action of G. Any such representation can therefore be viewed as

 $\varrho: \mathsf{G} \to \mathbf{O}(\mathbb{V}, \langle , \rangle) \cong \mathbf{O}(n).$