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Definition. A tensor field 0 on a Lie group G
1 said to be

o [eft-invariant if
Jo=¢ VaegG
e right-invariant if

R o=¢ VaegG

e hi-invariant if it 1s both left- and right-invariant.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the bi-invariant tensor fields

on G are naturally in bijective correspondence
with the set of tensors

o € (TeG) ® (R'Te*G)

which are invariant under the adjoint action of

G on TeG:
Adip = VaeG.

AdZp = R:—1L:<P



Theorem. Let G be any compact connected Lie
group of real dimension n. Then the space of
bi-invariant n-forms p € Q"G) on G is one-
dimenstonal. Moreover, there is a unique bi-
invariant n-form p € Q™(G) such that

/,uzl.
G



Theorem. Let G be any compact Lie group. Then
G carries a unique bi-invariant smooth measure

1| such that
L =1
G
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Given a function f : G — R, define average of f by

T—AﬂM

where f = f if f constant.

Notice this is a “projection,” in this sense that
f=f
and that, for any b € G,

R f — /G (Ry* £l = /G Ry (flul) = /G Flul =7

because Ry* || = |pul.



Average vector-valued function f : G — R" by

7:=/Gf|u\ cR”

where integral taken component-by-component, so

(fl)"'afn):<f17"'7fn)-



If f:G — Visa continuous vector-space-valued
function, can similarly define its average by

7—LﬂM

and this coincides with the R"-valued case relative
to any basis for V.
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s satd to be a representation of G on V.
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Proposition. Let G be a compact Lie group with
Haar measure |p|, and let

0: G — GL(V)

be a representation on G. Let 0 € V, and set

7= / @) Il
Then

This produces @ invariant under the action of G.

Warning: This process often yields © = 0!
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let

0:G— GL(V) = GL(n,R)
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definite inner product (, ) on'V that is invariant
under the action of G. Any such representation
can therefore be viewed as

0:G— OV, (,))=0(n).
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Proof. Let ¢ = (, ) be some given positive-
definite inner product on V., and consider the rep-
resentation induced by ¢ on @2V*. Averaging pro-
duces symmetric bilinear form @ = (, ) € @°V*
oiven by

()= / e e

But now
(v,0) = / (e oela™ o) I

is positive for any for any v # 0, because the inte-
grand is positive. This shows that { , ) is actually
positive definite.



Proposition. Let G be a compact Lie group, and
let

0:G— GL(V) = GL(n,R)
be a representation on G. Then there is a positive-

definite inner product (, ) on'V that is invariant
under the action of G. Any such representation
can therefore be viewed as
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