
MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University

March 9, 2021

1



Definition. A tensor field ϕ on a Lie group G
is said to be

2



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

3



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

La : G → G

b 7→ ab

4



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

5



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

6



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

Ra : G → G

b 7→ ba

7



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

8



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

• bi-invariant if it is both left- and right-invariant.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the left-invariant tensor fields
on G are naturally in bijective correspondence
with the tensors

(⊗kTeG)⊗ (⊗`Te∗G)

on the finite-dimensional vector space TeG ∼= g.

Proof. One can carry any given tensor at e
to any a ∈ G by La : TeG→ TaG.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the left-invariant tensor fields
on G are naturally in bijective correspondence
with the tensors

(⊗kTeG)⊗ (⊗`Te∗G)

on the finite-dimensional vector space TeG ∼= g.

(⊗kg)⊗ (⊗`g∗)
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the bi-invariant tensor fields
on G are naturally in bijective correspondence
with the set of tensors

ϕ ∈ (⊗kTeG)⊗ (⊗`Te∗G)

which are invariant under the adjoint action of
G on TeG:

Ad∗aϕ = ϕ ∀a ∈ G.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the bi-invariant tensor fields
on G are naturally in bijective correspondence
with the set of tensors

ϕ ∈ (⊗kTeG)⊗ (⊗`Te∗G)

which are invariant under the adjoint action of
G on TeG:

Ad∗aϕ = ϕ ∀a ∈ G.

Ad∗aϕ = R∗
a−1L

∗
aϕ
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Theorem. Let G be any compact connected Lie
group of real dimension n. Then the space of
bi-invariant n-forms µ ∈ Ωn(G) on G is one-
dimensional. Moreover, there is a unique bi-
invariant n-form µ ∈ Ωn(G) such that∫

G
µ = 1.
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Theorem. Let G be any compact Lie group. Then
G carries a unique bi-invariant smooth measure
|µ| such that ∫

G
|µ| = 1.
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Given a function f : G→ R, define average of f by

f =

∫
G
f |µ|

where f = f if f constant.

Notice this is a “projection,” in this sense that

f = f

and that, for any b ∈ G,

Lb
∗f =

∫
G

(Lb
∗f )|µ| =

∫
G
Lb
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∫
G
f |µ| = f
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Given a function f : G→ R, define average of f by

f =

∫
G
f |µ|

where f = f if f constant.

Notice this is a “projection,” in this sense that

f = f

and that, for any b ∈ G,

Rb
∗f =

∫
G

(Rb
∗f )|µ| =

∫
G
Rb
∗(f |µ|) =

∫
G
f |µ| = f

because Rb
∗|µ| = |µ|.
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Average vector-valued function f : G→ Rn by

f :=

∫
G
f |µ| ∈ Rn

where integral taken component-by-component, so

(f1, . . . , fn) = (f1, . . . , fn).
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If f : G → V is a continuous vector-space-valued
function, can similarly define its average by

f =

∫
G
f |µ|

and this coincides with the Rn-valued case relative
to any basis for V.
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Definition. If G is a Lie group, and if V∼= Rn
is vector space, a Lie-group homomorphism

% : G→ GL(V)∼= GL(n,R)
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Definition. If G is a Lie group, and if V ∼= Rn
is vector space, a Lie-group homomorphism

% : G→ GL(V) ∼= GL(n,R)

is said to be a representation of G on V.
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Proposition. Let G be a compact Lie group with
Haar measure |µ|, and let

% : G→ GL(V)

be a representation on G. Let ϕ ∈ V, and set

ϕ =

∫
a∈G

%(a)(ϕ) |µ|.

Then
%(b)(ϕ) = ϕ ∀b ∈ G.
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ϕ =

∫
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%(a)(ϕ) |µ|a

%(b)(ϕ) = %(b)

(∫
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%(a)(ϕ) |µ|a
)

=

∫
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%(ba)(ϕ) |µ|a
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∫
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%(ba)(ϕ) L∗
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=

∫
â∈G

%(â)(ϕ) L∗
b−1|µ|â

=

∫
â∈G

%(â)(ϕ) |µ|â

=

∫
a∈G

%(a)(ϕ) |µ|a
= ϕ
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Proposition. Let G be a compact Lie group with
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Proposition. Let G be a compact Lie group with
Haar measure |µ|, and let

% : G→ GL(V)

be a representation on G. Let ϕ ∈ V, and set

ϕ =

∫
a∈G

%(a)(ϕ) |µ|.

Then
%(b)(ϕ) = ϕ ∀b ∈ G.

This produces ϕ invariant under the action of G.

Warning: This process often yields ϕ = 0!
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Proposition. Let G be a compact Lie group, and
let Then there is a positive-definite inner product
〈 , 〉 on V that is invariant under the action of
G. Any such representation can be viewed as

54



Proposition. Let G be a compact Lie group, and
let

% : G→ GL(V) ∼= GL(n,R)

be a representation on G. Then there is a positive-
definite inner product 〈 , 〉 on V that is invari-
ant under the action of G. Any such represen-
tation can be viewed as

55



Proposition. Let G be a compact Lie group, and
let

% : G→ GL(V) ∼= GL(n,R)

be a representation on G. Then there is a positive-
definite inner product 〈 , 〉 on V that is invari-
ant under the action of G. Any such represen-
tation can be viewed as

56



Proposition. Let G be a compact Lie group, and
let

% : G→ GL(V) ∼= GL(n,R)

be a representation on G. Then there is a positive-
definite inner product 〈 , 〉 on V that is invariant
under the action of G. Any such representation
can be viewed as

57



Proposition. Let G be a compact Lie group, and
let

% : G→ GL(V) ∼= GL(n,R)

be a representation on G. Then there is a positive-
definite inner product 〈 , 〉 on V that is invariant
under the action of G. Any such representation
can therefore be viewed as

% : G→ O(V, 〈 , 〉) ∼= O(n).
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Proof. Let ϕ = ( , ) be some given positive-
definite inner product on V, and consider the rep-
resentation induced by % on �2V∗. Averaging pro-
duces symmetric bilinear form ϕ = 〈 , 〉 ∈ �2V∗
given by
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is positive for any for any v 6= 0, because the inte-
grand is positive. This shows that 〈 , 〉 is actually
positive definite.
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Proposition. Let G be a compact Lie group, and
let

% : G→ GL(V) ∼= GL(n,R)

be a representation on G. Then there is a positive-
definite inner product 〈 , 〉 on V that is invariant
under the action of G. Any such representation
can therefore be viewed as

% : G→ O(V, 〈 , 〉) ∼= O(n).
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