
MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University

March 4, 2021

1



Definition. A tensor field ϕ on a Lie group G
is said to be

2



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

3



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

La : G → G

b 7→ ab

4



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

5



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

6



Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
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Ra : G → G

b 7→ ba
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Definition. A tensor field ϕ on a Lie group G
is said to be

• left-invariant if

La
∗ϕ = ϕ ∀a ∈ G

• right-invariant if

Ra
∗ϕ = ϕ ∀a ∈ G

• bi-invariant if it is both left- and right-invariant.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the left-invariant tensor fields
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with the tensors
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the left-invariant tensor fields
on G are naturally in bijective correspondence
with the tensors

(⊗kTeG)⊗ (⊗`Te∗G)

on the finite-dimensional vector space TeG ∼= g.

Proof. One can carry any given tensor at e
to any a ∈ G by La : TeG→ TaG.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the left-invariant tensor fields
on G are naturally in bijective correspondence
with the tensors

(⊗kTeG)⊗ (⊗`Te∗G)

on the finite-dimensional vector space TeG ∼= g.

(⊗kg)⊗ (⊗`g∗)
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the bi-invariant tensor fields
on G are naturally in bijective correspondence
with the set of tensors

ϕ ∈ (⊗kTeG)⊗ (⊗`Te∗G)

which are invariant under the adjoint action of
G on TeG:

Ad∗aϕ = ϕ ∀a ∈ G.
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Lemma. Let G be any Lie group, and let g be its
Lie algebra. Then the bi-invariant tensor fields
on G are naturally in bijective correspondence
with the set of tensors

ϕ ∈ (⊗kTeG)⊗ (⊗`Te∗G)

which are invariant under the adjoint action of
G on TeG:

Ad∗aϕ = ϕ ∀a ∈ G.

Ad∗aϕ = R∗
a−1L

∗
aϕ
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Theorem. Let G be any compact connected Lie
group of real dimension n. Then the space of
bi-invariant n-forms µ ∈ Ωn(G) on G is one-
dimensional. Moreover, there is a unique bi-
invariant n-form µ ∈ Ωn(G) such that∫

G
µ = 1.
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Theorem. Let G be any compact Lie group. Then
G carries a unique bi-invariant smooth measure
|µ| such that ∫

G
|µ| = 1.

Our next objective:
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Theorem. Let G be any compact Lie group. Then
G carries a bi-invariant Riemannian metric 〈 , 〉.
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Definition. If G is a Lie group, and if V∼= Rn
is vector space, a Lie-group homomorphism

G→ GL(V)∼= GL(n,R)
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Definition. If G is a Lie group, and if V ∼= Rn
is vector space, a Lie-group homomorphism

G→ GL(V) ∼= GL(n,R)

is said to be a representation of G on V.

Example. Let G be any Lie group, and notice
that G acts on itself via the adjoint action

b 7→ Ada(b) := aba−1.
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Definition. If G is a Lie group, and if V ∼= Rn
is vector space, a Lie-group homomorphism

G→ GL(V) ∼= GL(n,R)

is said to be a representation of G on V.

Example. Let G be any Lie group, and notice
that G acts on itself via the adjoint action

b 7→ Ada(b) := aba−1.

This sends the identity e to itself.

So there is an induced action of G on TeG,

and we get a representation Ad∗ : G → GL(TeG)
called the adjoint representation.
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Any representation
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induces a Lie algebra homomorphism

g→ gl(V) ∼= gl(n,R).

In particular,

Ad∗ : G→ GL(g)

induces a Lie algebra homomorphism

ad : g→ gl(g)

What is this, explicitly?
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Any representation

G→ GL(V) ∼= GL(n,R)

induces a Lie algebra homomorphism

g→ gl(V) ∼= gl(n,R).

In particular,

Ad∗ : G→ GL(g)

induces a Lie algebra homomorphism

ad : g→ gl(g)

What is this, explicitly?

To find out, we’ll use the Lie derivative.
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the maps
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Proposition. Given any complete V ∈ X(M),
the maps

Φt : M →M

are all diffeomorphisms, and satisfy

Φ0 = idM

Φu ◦ Φt = Φu+t.

Thus, these form a one-parameter group of dif-
feomorphisms M →M .

Notice that
Φ−t = (Φt)

−1
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Proposition. Given any complete V ∈ X(M),
the maps

Φt : M →M

are all diffeomorphisms, and satisfy

Φ0 = idM

Φu ◦ Φt = Φu+t.

Thus, these form a one-parameter group of dif-
feomorphisms M →M .

Notice that
Φ−t = (Φt)

−1

When V not complete, “flow” only defined on a
neighborhood of M × {0} ⊂M × R:

Φ : M × R 99KM

where dashed arrow means “not defined everywhere.”
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Lie derivatives:

51



Lie derivative of tensor field ϕ w/resp. to V:
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Lie derivatives:

LVϕ :=
d

dt
Φ∗tϕ
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Lie derivatives:

LVϕ :=
d

dt
Φ∗tϕ

∣∣∣∣
t=0

where Φt is the flow of V.
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Lie derivatives:

Let V be a smooth vector field, with smooth flow

{Φt : M 99KM}.
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{Φt : M 99KM}.

Now suppose W is another vector field.

We then get a family of “pulled back” vector fields,
depending on t ∈ R, defined as

Φ∗tW := (Φ−1
t )∗W = (Φ−t)∗W.
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At each point, this gives us a family of tangent vec-
tors, depending differentiably on t.
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Lie derivatives:

Let V be a smooth vector field, with smooth flow

{Φt : M 99KM}.

Now suppose W is another vector field.

We then get a family of “pulled back” vector fields,
depending on t ∈ R, defined as

Φ∗tW := (Φ−1
t )∗W = (Φ−t)∗W.

At each point, this gives us a family of tangent vec-
tors, depending differentiably on t.

We can therefore define the Lie derivative ofW with
respect to V to be

LVW :=
d

dt
(Φ∗tW )

∣∣∣∣
t=0

.
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Theorem. For any vector fields V ,W ∈ X(M),

LVW = [V ,W ].

Very different-looking definitions!

Lie derivative:

LVW :=
d

dt
(Φ∗tW )

∣∣∣∣
t=0

.

Lie bracket:

[V ,W ]f = V (Wf )−W (V f ).
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This proves:

Theorem. For any two left-invariant vector fields
X and Y ,
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This proves:

Theorem. For any two left-invariant vector fields
X and Y ,

adX(Y ) = [X,Y ].
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