MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
March 4, 2021

Definition. A tensor field φ on a Lie group G is said to be

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{a}{ }^{*} \varphi=\varphi \quad \forall a \in G
$$

$$
\begin{gathered}
L_{\mathrm{a}}: G \rightarrow \mathrm{G} \\
\mathrm{~b} \mapsto \mathrm{ab}
\end{gathered}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

- right-invariant if

$$
R_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

- right-invariant if

$$
R_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

$$
\begin{gathered}
R_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{gathered}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

- right-invariant if

$$
R_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

Definition. A tensor field φ on a Lie group G is said to be

- left-invariant if

$$
L_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

- right-invariant if

$$
R_{\mathrm{a}}{ }^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G}
$$

- bi-invariant if it is both left- and right-invariant.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

$$
\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}^{*} \mathrm{G}\right)
$$

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

$$
\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}{ }^{*} \mathrm{G}\right)
$$

on the finite-dimensional vector space $T_{\mathrm{e}} \mathrm{G} \cong \mathfrak{g}$.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

$$
\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}{ }^{*} \mathrm{G}\right)
$$

on the finite-dimensional vector space $T_{\mathrm{e}} \mathrm{G} \cong \mathfrak{g}$.

Proof. One can carry any given tensor at e to any $\mathrm{a} \in \mathrm{G}$ by $L_{\mathrm{a}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{a} \mathrm{G}$.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

$$
\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}{ }^{*} \mathrm{G}\right)
$$

on the finite-dimensional vector space $T_{\mathrm{e}} \mathrm{G} \cong \mathfrak{g}$.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G are naturally in bijective correspondence with the tensors

$$
\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}{ }^{*} \mathrm{G}\right)
$$

on the finite-dimensional vector space $T_{\mathrm{e}} \mathrm{G} \cong \mathfrak{g}$.

$$
\left(\otimes^{k} \mathfrak{g}\right) \otimes\left(\otimes^{\ell} \mathfrak{g}^{*}\right)
$$

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the bi-invariant tensor fields on G are naturally in bijective correspondence with the set of tensors

$$
\varphi \in\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}^{*} \mathrm{G}\right)
$$

which are invariant under the adjoint action of G on $\mathrm{T}_{\mathrm{e}} \mathrm{G}$:

$$
A d_{\mathrm{a}}^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G} .
$$

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the bi-invariant tensor fields on G are naturally in bijective correspondence with the set of tensors

$$
\varphi \in\left(\otimes^{k} T_{\mathrm{e}} \mathrm{G}\right) \otimes\left(\otimes^{\ell} T_{\mathrm{e}}^{*} \mathrm{G}\right)
$$

which are invariant under the adjoint action of G on $T_{\mathrm{e}} \mathrm{G}$:

$$
A d_{\mathrm{a}}^{*} \varphi=\varphi \quad \forall \mathrm{a} \in \mathrm{G} .
$$

$$
A d_{\mathrm{a}}^{*} \varphi=R_{\mathrm{a}-1}^{*} L_{\mathrm{a}}^{*} \varphi
$$

Theorem. Let G be any compact connected Lie group of real dimension n. Then the space of bi-invariant n-forms $\mu \in \Omega^{n}(\mathrm{G})$ on G is onedimensional. Moreover, there is a unique biinvariant n-form $\mu \in \Omega^{n}(\mathrm{G})$ such that

$$
\int_{G} \mu=1
$$

Theorem. Let G be any compact Lie group. Then G carries a unique bi-invariant smooth measure $|\mu|$ such that

$$
\int_{G}|\mu|=1
$$

Our next objective:

Theorem. Let G be any compact Lie group. Then G carries a bi-invariant Riemannian metric \langle,$\rangle .$

Definition. If G is a Lie group, and if \mathbb{V} is vector space, a Lie-group homomorphism $\mathrm{G} \rightarrow \mathbf{G L}(\mathbb{V})$

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

is said to be a representation of G on \mathbb{V}.

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathbf{G} \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G L}(n, \mathbb{R})
$$

is said to be a representation of G on \mathbb{V}.

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action

$$
\mathrm{b} \mapsto A d_{\mathrm{a}}(\mathrm{~b}):=\mathrm{aba}^{-1} .
$$

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathbf{G} \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G L}(n, \mathbb{R})
$$

is said to be a representation of G on \mathbb{V}.

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action

$$
\mathrm{b} \mapsto A d_{\mathrm{a}}(\mathrm{~b}):=\mathrm{aba}^{-1} .
$$

This sends the identity e to itself.

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathrm{G} \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

is said to be a representation of G on \mathbb{V}.

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action

$$
\mathrm{b} \mapsto A d_{\mathrm{a}}(\mathrm{~b}):=\mathrm{aba}^{-1}
$$

This sends the identity e to itself.
So there is an induced action of G on $T_{\mathrm{e}} \mathrm{G}$,

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^{n}$ is vector space, a Lie-group homomorphism

$$
\mathbf{G} \rightarrow \mathbf{G L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

is said to be a representation of G on \mathbb{V}.

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action

$$
\mathrm{b} \mapsto A d_{\mathrm{a}}(\mathrm{~b}):=\mathrm{aba}^{-1}
$$

This sends the identity e to itself.
So there is an induced action of G on $T_{\mathrm{e}} \mathrm{G}$,
and we get a representation $A d_{*}: \mathrm{G} \rightarrow \mathbf{G L}\left(T_{\mathrm{e}} \mathrm{G}\right)$ called the adjoint representation.

Any representation

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

In particular,

$$
A d_{*}: G \rightarrow \mathbf{G L}(\mathfrak{g})
$$

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

In particular,

$$
A d_{*}: G \rightarrow \mathbf{G L}(\mathfrak{g})
$$

induces a Lie algebra homomorphism

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

In particular,

$$
A d_{*}: G \rightarrow \mathbf{G L}(\mathfrak{g})
$$

induces a Lie algebra homomorphism

$$
a d: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

In particular,

$$
A d_{*}: G \rightarrow \mathbf{G L}(\mathfrak{g})
$$

induces a Lie algebra homomorphism

$$
a d: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

What is this, explicitly?

Any representation

$$
\mathbf{G} \rightarrow \mathbf{G} \mathbf{L}(\mathbb{V}) \cong \mathbf{G} \mathbf{L}(n, \mathbb{R})
$$

induces a Lie algebra homomorphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V}) \cong \mathfrak{g l}(n, \mathbb{R})
$$

In particular,

$$
A d_{*}: G \rightarrow \mathbf{G L}(\mathfrak{g})
$$

induces a Lie algebra homomorphism

$$
a d: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

What is this, explicitly?
To find out, we'll use the Lie derivative.

Proposition.

Proposition. Given any complete

Proposition. Given any complete $V \in \mathfrak{X}(M)$,

Proposition. Given any complete $V \in \mathfrak{X}(M)$,

 the mapsProposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms,

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\Phi_{0}=i d_{M}
$$

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.

Proposition. Given any complete $V \in \mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.

Notice that

$$
\Phi_{-t}=\left(\Phi_{t}\right)^{-1}
$$

Proposition. Given any complete $V \in \mathfrak{X}(M)$,

 the maps$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.

Notice that

$$
\Phi_{-t}=\left(\Phi_{t}\right)^{-1}
$$

When V not complete, "flow" only defined on a neighborhood of $M \times\{0\} \subset M \times \mathbb{R}$:

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

where dashed arrow means "not defined everywhere."

Lie derivatives:

Lie derivative of tensor field $\varphi \mathrm{w} /$ resp. to V :

Lie derivatives:

Lie derivatives:

$$
\Phi_{t}^{*} \varphi
$$

Lie derivatives:

$$
\frac{d}{d t} \Phi_{t}^{*} \varphi
$$

Lie derivatives:

$$
\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

Lie derivatives:

$$
\mathcal{L}_{V} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

Lie derivatives:

$$
\mathcal{L}_{\vee} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .

Lie derivatives:

Lie derivatives:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\}
$$

Now suppose W is another vector field.

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \longrightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W .
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.
We can therefore define the Lie derivative of W with respect to V to be

Lie derivatives:

Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.
We can therefore define the Lie derivative of W with respect to V to be

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,
 $$
\mathcal{L}_{V} W=[V, W]
$$

$$
\begin{aligned}
& \text { Theorem. For any vector fields } V, W \in \mathfrak{X}(M) \text {, } \\
& \qquad \mathcal{L}_{V} W=[V, W] .
\end{aligned}
$$

Very different-looking definitions!

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Very different-looking definitions!
Lie derivative:

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Very different-looking definitions!
Lie derivative:

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Lie bracket:

$$
[V, W] f=V(W f)-W(V f)
$$

Flow of left-invariant vector field X on G

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
A d_{\gamma_{X}(t) *} Y=\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right]_{*} Y
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\left.\gamma_{X}(t)\right] *}\right] Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y
\end{aligned}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\left.\gamma_{X}(t)\right] *}\right] \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y
\end{aligned}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)-1} \circ L_{\left.\gamma_{X}(t)\right] *}\right] Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y
\end{aligned}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right]_{*} Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y \\
& =\Phi_{t}^{*} Y
\end{aligned}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right] * Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y \\
& =\Phi_{t}^{*} Y
\end{aligned}
$$

and hence

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right]_{*} Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y \\
& =\Phi_{t}^{*} Y
\end{aligned}
$$

and hence

$$
\left.\frac{d}{d t} A d_{\gamma_{X}(t) *} Y\right|_{t=0}=\left.\frac{d}{d t} \Phi_{t}^{*} Y\right|_{t=0}
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right]_{*} Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y \\
& =\Phi_{t}^{*} Y
\end{aligned}
$$

and hence

$$
\left.\frac{d}{d t} A d_{\gamma_{X}(t) *} Y\right|_{t=0}=\left.\frac{d}{d t} \Phi_{t}^{*} Y\right|_{t=0}=\mathcal{L}_{X} Y
$$

Flow of left-invariant vector field X on G given by right translation by $\gamma_{X}(t)=\exp \left(\left.t X\right|_{\mathrm{e}}\right)$:

$$
\Phi_{t}=R_{\gamma_{X}(t)}
$$

Thus, if Y is any left-invariant vector field,

$$
\begin{aligned}
A d_{\gamma_{X}(t) *} Y & =\left[R_{\gamma_{X}(t)^{-1}} \circ L_{\gamma_{X}(t)}\right] * Y \\
& =R_{\gamma_{X}(-t) *} L_{\gamma_{X}(t) *} Y \\
& =R_{\gamma_{X}(-t) *} Y \\
& =\Phi_{(-t) *} Y \\
& =\Phi_{t}^{*} Y
\end{aligned}
$$

and hence

$$
\left.\frac{d}{d t} A d_{\gamma_{X}(t) *} Y\right|_{t=0}=\left.\frac{d}{d t} \Phi_{t}^{*} Y\right|_{t=0}=\mathcal{L}_{X} Y=[X, Y]
$$

This proves:

This proves:
Theorem. For any two left-invariant vector fields X and Y,

This proves:
Theorem. For any two left-invariant vector fields X and Y,

$$
a d_{X}(Y)=[X, Y] .
$$

