MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

March 4, 2021

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

$$\begin{array}{rrrr} L_{\mathsf{a}}:\mathsf{G} & \to & \mathsf{G} \\ & \mathsf{b} & \mapsto \mathsf{ab} \end{array}$$

• left-invariant if

$${L_{\mathsf{a}}}^* arphi = arphi \quad orall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}{}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}^{*}\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

$$\begin{array}{rrrr} R_{\mathsf{a}}:\mathsf{G} & \to & \mathsf{G} \\ & \mathsf{b} & \mapsto \mathsf{ba} \end{array}$$

• left-invariant if

$$L_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}{}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• left-invariant if

$$L_{\mathsf{a}}{}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• right-invariant if

$$R_{\mathsf{a}}^* \varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}$$

• *bi-invariant* if it is both *left- and right-invariant*.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra.

Lemma. Let G be any Lie group, and let \mathfrak{g} be its Lie algebra. Then the left-invariant tensor fields on G

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^\ell T_{\mathsf{e}}^*\mathsf{G})$

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

Proof. One can carry any given tensor at **e** to any $\mathbf{a} \in \mathbf{G}$ by $L_{\mathbf{a}} : T_{\mathbf{e}}\mathbf{G} \to T_{a}\mathbf{G}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k T_{\mathsf{e}}\mathsf{G}) \otimes (\otimes^{\ell} T_{\mathsf{e}}^*\mathsf{G})$

on the finite-dimensional vector space $T_{e}G \cong \mathfrak{g}$.

 $(\otimes^k \mathfrak{g}) \otimes (\otimes^\ell \mathfrak{g}^*)$

 $\varphi \in (\otimes^k T_{\mathbf{e}} \mathbf{G}) \otimes (\otimes^{\ell} T_{\mathbf{e}}^* \mathbf{G})$

which are invariant under the adjoint action of G on T_eG :

 $Ad_{\mathsf{a}}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}.$

 $\varphi \in (\otimes^k T_{\mathbf{e}} \mathbf{G}) \otimes (\otimes^{\ell} T_{\mathbf{e}}^* \mathbf{G})$

which are invariant under the adjoint action of G on T_eG :

$$Ad_{\mathsf{a}}^*\varphi = \varphi \quad \forall \mathsf{a} \in \mathsf{G}.$$

$$Ad_{\mathsf{a}}^{*}\varphi = R_{\mathsf{a}^{-1}}^{*}L_{\mathsf{a}}^{*}\varphi$$

Theorem. Let G be any compact connected Lie group of real dimension n. Then the space of bi-invariant n-forms $\mu \in \Omega^n(G)$ on G is onedimensional. Moreover, there is a unique biinvariant n-form $\mu \in \Omega^n(G)$ such that

$$\int_{\mathsf{G}} \mu = 1.$$

Theorem. Let G be any compact Lie group. Then G carries a unique bi-invariant smooth measure $|\mu|$ such that

$$\int_{\mathsf{G}} |\boldsymbol{\mu}| = 1.$$

Our next objective:

Theorem. Let G be any compact Lie group. Then G carries a bi-invariant Riemannian metric \langle , \rangle .

Definition. If G is a Lie group, and if \mathbb{V} is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V})$

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ **Definition.** If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$

is said to be a representation of G on \mathbb{V} .

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$

is said to be a representation of G on \mathbb{V} .

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action $b \mapsto Ad_a(b) := aba^{-1}$. **Definition.** If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ is said to be a representation of G on \mathbb{V} .

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action $b \mapsto Ad_a(b) := aba^{-1}$.

This sends the identity **e** to itself.

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ is said to be a representation of G on \mathbb{V} .

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action $b \mapsto Ad_a(b) := aba^{-1}$.

This sends the identity **e** to itself.

So there is an induced action of G on T_eG ,

Definition. If G is a Lie group, and if $\mathbb{V} \cong \mathbb{R}^n$ is vector space, a Lie-group homomorphism $G \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n, \mathbb{R})$ is said to be a representation of G on \mathbb{V} .

Example. Let G be any Lie group, and notice that G acts on itself via the adjoint action $b \mapsto Ad_a(b) := aba^{-1}$.

This sends the identity **e** to itself.

So there is an induced action of G on T_eG ,

and we get a representation $Ad_* : \mathsf{G} \to \mathbf{GL}(T_e\mathsf{G})$ called the adjoint representation.

 $\mathsf{G} \to \mathbf{GL}(\mathbb{V}) \cong \mathbf{GL}(n,\mathbb{R})$

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

In particular,

 $Ad_*: \mathsf{G} \to \mathbf{GL}(\mathfrak{g})$

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

In particular,

 $Ad_*: \mathsf{G} \to \mathbf{GL}(\mathfrak{g})$

induces a Lie algebra homomorphism

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

In particular,

 $Ad_*: \mathsf{G} \to \mathbf{GL}(\mathfrak{g})$

induces a Lie algebra homomorphism

 $ad:\mathfrak{g}
ightarrow\mathfrak{gl}(\mathfrak{g})$

Any representation

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

In particular,

 $Ad_*: \mathsf{G} \to \mathbf{GL}(\mathfrak{g})$

induces a Lie algebra homomorphism

 $ad:\mathfrak{g}
ightarrow\mathfrak{gl}(\mathfrak{g})$

What is this, explicitly?

Any representation

 $\mathsf{G}\to \mathbf{GL}(\mathbb{V})\cong \mathbf{GL}(n,\mathbb{R})$ induces a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(\mathbb{V}) \cong \mathfrak{gl}(n,\mathbb{R}).$

In particular,

 $Ad_*: \mathsf{G} \to \mathbf{GL}(\mathfrak{g})$

induces a Lie algebra homomorphism

 $ad:\mathfrak{g}
ightarrow\mathfrak{gl}(\mathfrak{g})$

What is this, explicitly?

To find out, we'll use the **Lie derivative**.

Proposition.

Proposition. Given any complete

 $\Phi_t: M \to M$

 $\Phi_t: M \to M$

are all diffeomorphisms,

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = i d_M$

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$ $\Phi_u \circ \Phi_t = \Phi_{u+t}.$

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

Notice that

$$\Phi_{-t} = (\Phi_t)^{-1}$$

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

Notice that

$$\Phi_{-t} = (\Phi_t)^{-1}$$

When V not complete, "flow" only defined on a neighborhood of $M \times \{0\} \subset M \times \mathbb{R}$:

$$\Phi: M \times \mathbb{R} \dashrightarrow M$$

where dashed arrow means "not defined everywhere."

Lie derivative of tensor field φ w/resp. to V:

arphi

 $\Phi_t^* \varphi$

 $\frac{d}{dt} \Phi_t^* \varphi$

 $\left. \frac{d}{dt} \Phi_t^* \varphi \right|_{t=0}$

$$\mathcal{L}_{\mathsf{V}} \varphi := \left. \frac{d}{dt} \Phi_t^* \varphi \right|_{t=0}$$

$$\mathcal{L}_{\mathsf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of V.

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Let V be a smooth vector field, with smooth flow $\{ \Phi_t : M \dashrightarrow M \}.$

Now suppose W is another vector field.

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

Let V be a smooth vector field, with smooth flow $\{ \Phi_t: M \dashrightarrow M \}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field.

We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

We can therefore define the Lie derivative of W with respect to V to be

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field.

We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

We can therefore define the Lie derivative of W with respect to V to be

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Very different-looking definitions!

Very different-looking definitions!

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Very different-looking definitions!

Lie derivative:

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Lie bracket:

[V, W]f = V(Wf) - W(Vf).

Flow of left-invariant vector field X on G

Flow of left-invariant vector field X on **G** given by right translation by $\gamma_X(t) = \exp(tX|_{\mathbf{e}})$:

$$\Phi_t = R_{\gamma_X(t)}$$

$$\Phi_t = R_{\gamma_X(t)}$$

Thus, if Y is any left-invariant vector field,

$$\Phi_t = R_{\gamma_X(t)}$$

Thus, if Y is any left-invariant vector field,

$$Ad_{\gamma_X(t)*}Y = [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y$$

$$\Phi_t = R_{\gamma_X(t)}$$

Thus, if Y is any left-invariant vector field,

$$\begin{split} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \end{split}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{split} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \end{split}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \end{aligned}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \\ &= \Phi_t^*Y \end{aligned}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \\ &= \Phi_t^*Y \end{aligned}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \\ &= \Phi_t^*Y \end{aligned}$$

$$\left.\frac{d}{dt}Ad_{\gamma_X(t)*}Y\right|_{t=0} = \left.\frac{d}{dt}\Phi_t^*Y\right|_{t=0}$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \\ &= \Phi_t^*Y \end{aligned}$$

$$\frac{d}{dt}Ad_{\gamma_X(t)*}Y\Big|_{t=0} = \frac{d}{dt}\Phi_t^*Y\Big|_{t=0} = \mathcal{L}_XY$$

 $\Phi_t = R_{\gamma_X(t)}$ Thus, if Y is any left-invariant vector field,

$$\begin{aligned} Ad_{\gamma_X(t)*}Y &= [R_{\gamma_X(t)^{-1}} \circ L_{\gamma_X(t)}]_*Y \\ &= R_{\gamma_X(-t)*}L_{\gamma_X(t)*}Y \\ &= R_{\gamma_X(-t)*}Y \\ &= \Phi_{(-t)*}Y \\ &= \Phi_t^*Y \end{aligned}$$

$$\frac{d}{dt}Ad_{\gamma_X(t)*}Y\Big|_{t=0} = \frac{d}{dt}\Phi_t^*Y\Big|_{t=0} = \mathcal{L}_XY = [X,Y]$$

This proves:

This proves:

Theorem. For any two left-invariant vector fields X and Y,

This proves:

Theorem. For any two left-invariant vector fields X and Y,

 $ad_X(Y) = [X, Y].$