MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

March 30, 2021

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field $g \in C^{\infty}(\odot^2 T^*M)$

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field

$$g \in C^{\infty}(\odot^2 T^*M)$$

which defines a positive-definite inner product on each tangent space T_pM :

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field

$$g \in C^{\infty}(\odot^2 T^* M)$$

which defines a positive-definite inner product on each tangent space T_pM :

$$v \neq 0 \implies g(v, v) > 0.$$

For any piece-wise smooth path

$$\gamma:[a,b]\to M$$

in (M, g) we define its length to be

$$L(\gamma) = \int_{a}^{b} \sqrt{g\left(\frac{d\gamma(t)}{dt}, \frac{d\gamma(t)}{dt}\right)} dt$$

For any piece-wise smooth path

$$\gamma:[a,b]\to M$$

in (M, g) we define its length to be

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)|_{g} dt$$

For any piece-wise smooth path

$$\gamma:[a,b]\to M$$

in (M, g) we define its length to be

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)|_{g} dt.$$

We say that γ is a path from p to q if

$$\gamma(a) = p$$
 and $\gamma(b) = q$.

Definition. Let (M, g) be a connected Riemannian manifold.

Definition. Let (M, g) be a connected Riemannian manifold. For any $p, q \in M$ we define

Definition. Let (M, g) be a connected Riemannian manifold. For any $p, q \in M$ we define $\operatorname{dist}(p, q) = \inf\{L(\gamma) \mid \gamma \text{ piece-wise smooth path from } p \text{ to } q\}$

Definition. Let (M, g) be a connected Riemannian manifold. For any $p, q \in M$ we define $\operatorname{dist}(p, q) = \inf\{L(\gamma) \mid \gamma \text{ piece-wise smooth path from } p \text{ to } q\}$

Proposition. This definition makes (M, dist) into a metric space.

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

- $\bullet \nabla_v w \nabla_w v = [v, w]; and$
- $ug(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w).$

 $\gamma:(a,b)\to M$

$$\gamma:(a,b)\to M$$

in a Riemannian manifold (M, g)

$$\gamma:(a,b)\to M$$

in a Riemannian manifold (M, g) is said to be a geodesic if

$$\gamma:(a,b)\to M$$

in a Riemannian manifold (M, g) is said to be a geodesic if

$$\nabla_{\gamma'}\gamma' = 0$$

$$\gamma:(a,b)\to M$$

in a Riemannian manifold (M, g) is said to be a geodesic if

$$\nabla_{\gamma'}\gamma' = 0$$

for every $t \in (a, b)$, where ∇ denotes the Riemannian connection determined by g.

Let (M, g) be a Riemannian n-manifold, $p \in M$.

Let (M, g) be a Riemannian n-manifold, $p \in M$. Metric defines preferred curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \dashrightarrow M$$

Let (M, g) be a Riemannian n-manifold, $p \in M$. Metric defines preferred curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_p M \dashrightarrow M$$

which is at least defined in a neighborhood of 0:

Definition. A Riemannian manifold (M, g) is called geodesically complete at $p \in M$ if

$$\exp: T_pM \to M$$

is defined on the entire tangent space.

Definition. A Riemannian manifold (M, g) is called geodesically complete at $p \in M$ if

$$\exp: T_pM \to M$$

is defined on the entire tangent space.

Definition. A Riemannian manifold (M, g) is called geodesically complete if

$$\exp:TM\to M$$

is defined on the entire tangent bundle.

 \bullet (M, dist) is a complete metric space;

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- ullet (M,g) is a geodesically complete at some p.

Moreover, any of these conditions implies

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

Moreover, any of these conditions implies

 \bullet every pair of points $p,q \in M$

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

Moreover, any of these conditions implies

ullet every pair of points $p,q\in M$ is joined by a geodesic segment

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

Moreover, any of these conditions implies

ullet every pair of points $p,q\in M$ is joined by a geodesic segment

$$\gamma:[a,b]\to M$$

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

Moreover, any of these conditions implies

ullet every pair of points $p,q\in M$ is joined by a geodesic segment

$$\gamma:[a,b]\to M$$

of length $L(\gamma) = \operatorname{dist}(p, q)$.

Lemma (Gauss Lemma). Let (M, g) be a connected Riemannian manifold, and let $p \in M$. Then, for any sufficiently small $\varepsilon > 0$, exp is a diffeomorphism between $B_{\varepsilon}(0) \subset T_pM$ and $B_{\varepsilon}(p) \subset M$, and the radial geodesic segment from p to q realizes $\operatorname{dist}(p, q)$, and, up to reparameterization, is the unique curve in M with this property.

Lemma (Geodesically Convex Neighborhoods). Let (M, g) be a connected Riemannian manifold, and let $p \in M$. Then, for any sufficiently small $\varepsilon > 0$, $B_{\varepsilon}(p) \subset M$ is geodesically convex, in the sense that:

For any two points $q, r \in B_{\varepsilon}(p)$, there is a unique geodesic segment in $B_{\varepsilon}(p)$ joining q to r. Moreover, this segment realizes $\operatorname{dist}(q, r)$, and, up to reparameterization, is the unique curve in M with this property.

Corollary. Let M be a compact manifold, g any Riemannian metric on M.

Corollary. Let M be a compact manifold, g any Riemannian metric on M. Then, $\forall p \in M$,

Corollary. Let M be a compact manifold, g any Riemannian metric on M. Then, $\forall p \in M$,

 $\exp: T_pM \to M$

Corollary. Let M be a compact manifold, g any Riemannian metric on M. Then, $\forall p \in M$,

$$\exp: T_pM \to M$$

is surjective.

Corollary. Let G be a compact Lie group. Then

 $\exp:\mathfrak{g}\to\mathsf{G}$

is surjective.

Let (M, g) be a Riemannian n-manifold, $p \in M$. Metric defines preferred curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \dashrightarrow M$$

which is at least defined in a neighborhood of 0:

This is a diffeomorphism on a neighborhhood of 0.

For G with bi-invariant g, equals Lie-theoretic exp.

- \bullet (M, dist) is a complete metric space;
- \bullet (M, g) is a geodesically complete;
- \bullet (M, g) is a geodesically complete at some p.

Moreover, any of these conditions implies

ullet every pair of points $p,q\in M$ is joined by a geodesic segment

$$\gamma:[a,b]\to M$$

of length $L(\gamma) = \operatorname{dist}(p, q)$.

Corollary. Let G be a compact Lie group. Then

 $\exp:\mathfrak{g}\to\mathsf{G}$

is surjective.

Corollary. Let G be a compact Lie group. Then $\exp: \mathfrak{g} \to \mathsf{G}$

is surjective.

Not true for non-compact Lie groups!

Corollary. Let G be a compact Lie group. Then $\exp: \mathfrak{g} \to G$

is surjective.

Not true for non-compact Lie groups!

We'll see it's not even true for $\mathbf{SL}(2,\mathbb{R})!$