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Definition. If G s a Lie group, and if V = R"
15 vector space, a Lie-group homomorphism

G — GL(V) 2 GL(n, R)

s satd to be a representation of G on V.

Example. Let G be any Lie group, and notice
that G acts on itself via the adjoint action

b — Ad,(b) := aba™ .
This sends the identity e to itself.
So there is an induced action of G on TeG,

and we get a representation Ady : G — GL(TLG)
called the adjoint representation.
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Any representation

G — GL(V) = GL(n, R)

induces a Lie algebra homomorphism

g — gl(V) = gl(n, R).
In particular,

induces a Lie algebra homomorphism

ad : g — gl(g)
What is this, explicitly”

To find out, we'll use the Lie derivative.
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Proposition. Given any complete V' € X(M),

the maps
Oy M — M
are all diffeomorphisms, and satisfy
Op = 1d)y
Dy 0 Dy = Dyyuyg.

Thus, these form a one-parameter group of dif-
feomorphisms M — M.

Notice that
O_y=(Dp) 7!

When V' not complete, “flow” only defined on a
neighborhood of M x {0} C M x R:

O: M XR--» M

where dashed arrow means “not defined everywhere.”
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Lie derivatives:

d

Ly = —PF
V& Jt t¥ -

where ®; is the flow of V.
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Let IV be a smooth vector field, with smooth flow

{Dy: M --+ M}.

Now suppose V' is another vector field.

We then get a family of “pulled back” vector fields,
depending on t € R, defined as

OFW = (07 1)V = (D_g)u V.

At each point, this gives us a family of tangent vec-
tors, depending differentiably on ¢.

We can therefore define the Lie derivative of 11 with
respect to 1/ to be

d
LoW = —(OFW :
Vv dt( / )t:O
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Theorem. For any vector fields V', W € X(M),
LyW =V, W].

Very different-looking definitions!

Lie derivative:

d
LoW = —(OFW .

Lie bracket:

V,Wf = VIV f) =WV f).
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Flow of left-invariant vector field X on G given by
right translation by vx () = exp(tX]|e):

bt =Foe
Thus, if Y is any left-invariant vector field,

and hence

d

EACZWX(@*




Flow of left-invariant vector field X on G given by
right translation by vx () = exp(tX]|e):

Pt =Ly (1)
Thus, if Y is any left-invariant vector field,

Ady Y = By © Ly pleY
= By (=t lyx (0¥
= By (-t
= Pt
— OFY
and hence
dAd Y —dCD*Y = LyY = |X,Y
gAY | =gt =X = [X,Y]
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This proves:

Theorem. For any two left-invariant vector fields
X and Y,

adx (V) = [X,Y].



