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Definition. A Riemannian metric g on a smooth
manifold M is a smooth symmetric tensor field

g ∈ C∞(�2T ∗M)

which defines a positive-definite inner product
on each tangent space TpM :

v 6= 0 =⇒ g(v, v) > 0.

Proposition. Every smooth manifold M admits
Riemannian metrics g.

Proof. Partition of unity argument. . .
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If M is a smooth manifold, let

X = X(M) := C∞(TM)

denote the smooth tangent vector fields on M .

Definition. An affine connection ∇ on a smooth
manifold M is an operation

∇ : X× X −→ X

(u, v) 7−→ ∇uv

such that, for u, v, w ∈ X, and f ∈ C∞ one has

∇u+vw = ∇uw +∇vw

∇fuw = f∇uw

∇u(v + w) = ∇uv +∇uw

∇u(fw) = (uf )w + f∇uw
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
that is

• torsion-free: T∇ = 0

T∇(v, w) := ∇vw −∇wv − [v, w]
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
that is

• torsion-free; and

•metric compatible: ∇g = 0.

(∇g)(u, v, w) := ug(v, w)−g(∇uv, w)−g(v,∇uw)
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Theorem. Any compact Lie group admits a
bi-invariant Riemannian metric g.

• left-invariant:

La
∗g = g ∀a ∈ G

• right-invariant:

Ra
∗g = g ∀a ∈ G

• bi-invariant: both left- and right-invariant.
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〈 , 〉 on TeG = g which is invariant under adjoint
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Let g be left-invariant extension of 〈 , 〉:

g|a = La∗〈 , 〉
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