MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
March 11, 2021

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field

$$
g \in C^{\infty}\left(\odot^{2} T^{*} M\right)
$$

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field

$$
g \in C^{\infty}\left(\odot^{2} T^{*} M\right)
$$

which defines a positive-definite inner product on each tangent space $T_{p} M$:

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field

$$
g \in C^{\infty}\left(\odot^{2} T^{*} M\right)
$$

which defines a positive-definite inner product on each tangent space $T_{p} M$:

$$
v \neq 0 \quad \Longrightarrow \quad g(v, v)>0 .
$$

Example. Since $T_{p} \mathbb{R}^{n}=\mathbb{R}^{n}$, usual dot product \langle,$\rangle defines a Riemannian metric on \mathbb{R}^{n}$:

$$
\langle,\rangle=d x^{1} \otimes d x^{1}+\cdots+d x^{n} \otimes d x^{n}
$$

Example. Since $T_{p} \mathbb{R}^{n}=\mathbb{R}^{n}$, usual dot product \langle,$\rangle defines a Riemannian metric on \mathbb{R}^{n}$:

$$
\langle,\rangle=d x^{1} \otimes d x^{1}+\cdots+d x^{n} \otimes d x^{n}
$$

Example. Consider embedded submanifold.

$$
j: M^{m} \hookrightarrow \mathbb{R}^{n}
$$

Example. Since $T_{p} \mathbb{R}^{n}=\mathbb{R}^{n}$, usual dot product \langle,$\rangle defines a Riemannian metric on \mathbb{R}^{n}$:

$$
\langle,\rangle=d x^{1} \otimes d x^{1}+\cdots+d x^{n} \otimes d x^{n}
$$

Example. Consider embedded submanifold.

$$
j: M^{m} \hookrightarrow \mathbb{R}^{n}
$$

Restricting dot product \langle,$\rangle to T M$ defines a Riemannian metric on M :

$$
g=j^{*}\left(d x^{1} \otimes d x^{1}+\cdots+d x^{n} \otimes d x^{n}\right)
$$

If M is a smooth manifold, let

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$
\nabla_{u+v} w=\nabla_{u} w+\nabla_{v} w
$$

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$
\begin{aligned}
\nabla_{u+v} w & =\nabla_{u} w+\nabla_{v} w \\
\nabla_{f u} w & =f \nabla_{u} w
\end{aligned}
$$

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$
\begin{aligned}
\nabla_{u+v} w & =\nabla_{u} w+\nabla_{v} w \\
\nabla_{f u} w & =f \nabla_{u} w \\
\nabla_{u}(v+w) & =\nabla_{u} v+\nabla_{u} w
\end{aligned}
$$

If M is a smooth manifold, let

$$
\mathfrak{X}=\mathfrak{X}(M):=C^{\infty}(T M)
$$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$
\begin{aligned}
\nabla: \mathfrak{X} \times \mathfrak{X} & \longrightarrow \mathfrak{X} \\
(u, v) & \longmapsto \nabla_{u} v
\end{aligned}
$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$
\begin{aligned}
\nabla_{u+v} w & =\nabla_{u} w+\nabla_{v} w \\
\nabla_{f u} w & =f \nabla_{u} w \\
\nabla_{u}(v+w) & =\nabla_{u} v+\nabla_{u} w \\
\nabla_{u}(f w) & =(u f) w+f \nabla_{u} w
\end{aligned}
$$

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component different

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component differentiation.
That is, if

$$
u=u^{j} \frac{\partial}{\partial x^{j}}, \quad v=v^{j} \frac{\partial}{\partial x^{j}}
$$

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component differentiation.
That is, if

$$
u=u^{j} \frac{\partial}{\partial x^{j}}, \quad v=v^{j} \frac{\partial}{\partial x^{j}}
$$

using the Einstein summation convention, then

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component differentiation.
That is, if

$$
u=u^{j} \frac{\partial}{\partial x^{j}}, \quad v=v^{j} \frac{\partial}{\partial x^{j}}
$$

using the Einstein summation convention, then

$$
D_{u} v=\left(u v^{j}\right) \frac{\partial}{\partial x^{j}}=\left(u^{i} \frac{\partial v^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}
$$

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component differentiation.
That is, if

$$
u=\sum_{j=1}^{n} u^{j} \frac{\partial}{\partial x^{j}}, \quad v=\sum_{j=1}^{n} v^{j} \frac{\partial}{\partial x^{j}}
$$

then

$$
D_{u} v=\sum_{i, j=1}^{n}\left(u^{i} \frac{\partial v^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}
$$

Example. The "standard connection" D on $M=$ \mathbb{R}^{n} is defined by component-by-component differentiation.
That is, if

$$
v=v^{j} \frac{\partial}{\partial x^{j}}
$$

using the Einstein summation convention, then

$$
D_{u} v=\left(u v^{j}\right) \frac{\partial}{\partial x^{j}}
$$

Example. $M^{m} \subset \mathbb{R}^{n}$ embedded submanifold.

Example. $M^{m} \subset \mathbb{R}^{n}$ embedded submanifold.
At each $p \in M$, consider orthogonal projection

Example. $M^{m} \subset \mathbb{R}^{n}$ embedded submanifold.
At each $p \in M$, consider orthogonal projection

$$
\begin{aligned}
T_{p} \mathbb{R}^{n} & \rightarrow T_{p} M \\
v & \mapsto v^{\|}
\end{aligned}
$$

Example. $M^{m} \subset \mathbb{R}^{n}$ embedded submanifold.
At each $p \in M$, consider orthogonal projection

$$
\begin{aligned}
T_{p} \mathbb{R}^{n} & \rightarrow T_{p} M \\
v & \mapsto v^{\|}
\end{aligned}
$$

May then define an affine connection ∇ on M by

$$
\nabla_{u} v=\left(D_{u} v\right)^{\|}
$$

Theorem. Let g be a Riemannian metric on M.

> Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

- $\nabla_{v} w-\nabla_{w} v=[v, w]$

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

- $\nabla_{v} w-\nabla_{w} v=[v, w] ;$ and
- $u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)$.

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇

 that isTheorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free:

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free: $\mathcal{T}_{\nabla}=0$

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free: $\mathcal{T}_{\nabla}=0$

$$
\mathcal{T}_{\nabla}(v, w):=\nabla_{v} w-\nabla_{w} v-[v, w]
$$

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free; and
- metric compatible:

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free; and
- metric compatible: $\nabla g=0$.

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ that is

- torsion-free; and
- metric compatible: $\nabla g=0$.

$$
(\nabla g)(u, v, w):=u g(v, w)-g\left(\nabla_{u} v, w\right)-g\left(v, \nabla_{u} w\right)
$$

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

- $\nabla_{v} w-\nabla_{w} v=[v, w] ;$ and
- $\nabla_{u} g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)$.

Theorem. Let g be a Riemannian metric on M. Then M admits a unique affine connection ∇ such that

- $\nabla_{v} w-\nabla_{w} v=[v, w] ;$ and
- $u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)$.

Proof.

Proof. Metric compatibility:

Proof. Metric compatibility:

$$
u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)
$$

Proof. Metric compatibility:

$$
\begin{aligned}
& u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right) \\
& v g(w, u)=g\left(\nabla_{v} w, u\right)+g\left(w, \nabla_{v} u\right)
\end{aligned}
$$

Proof. Metric compatibility:

$$
\begin{aligned}
& u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right) \\
& v g(w, u)=g\left(\nabla_{v} w, u\right)+g\left(w, \nabla_{v} u\right) \\
& w g(u, v)=g\left(\nabla_{w} u, v\right)+g\left(u, \nabla_{w} v\right)
\end{aligned}
$$

Proof. Metric compatibility:

$$
\begin{aligned}
u g(v, w) & =g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right) \\
v g(w, u) & =g\left(\nabla_{v} w, u\right)+g\left(w, \nabla_{v} u\right) \\
-w g(u, v) & =-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{aligned}
$$

Proof. Metric compatibility:

$$
\begin{aligned}
u g(v, w) & =g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right) \\
v g(w, u) & =g\left(\nabla_{v} w, u\right)+g\left(w, \nabla_{v} u\right) \\
-w g(u, v) & =-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{aligned}
$$

Proof. Metric compatibility:

$$
\begin{gathered}
u g(v, w)=g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right) \\
v g(w, u)=g\left(\nabla_{v} w, u\right)+g\left(w, \nabla_{v} u\right) \\
-w g(u, v)=-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right) \\
u g(v, w)+v g(w, u)-w g(u, v)= \\
g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)+g\left(\nabla_{v} w, u\right) \\
+g\left(w, \nabla_{v} u\right)-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{gathered}
$$

Proof. Metric compatibility:

$$
\begin{gathered}
u g(v, w)+v g(w, u)-w g(u, v)= \\
g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)+g\left(\nabla_{v} w, u\right) \\
+g\left(w, \nabla_{v} u\right)-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{gathered}
$$

Proof. Torsion-free:

$$
\begin{gathered}
u g(v, w)+v g(w, u)-w g(u, v)= \\
g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)+g\left(\nabla_{v} w, u\right) \\
+g\left(w, \nabla_{v} u\right)-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{gathered}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{gathered}
u g(v, w)+v g(w, u)-w g(u, v)= \\
g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)+g\left(\nabla_{v} w, u\right) \\
+g\left(w, \nabla_{v} u\right)-g\left(\nabla_{w} u, v\right)-g\left(u, \nabla_{w} v\right)
\end{gathered}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{gathered}
u g(v, w)+v g(w, u)-w g(u, v)= \\
g\left(\nabla_{u} v, w\right)+g\left(v, \nabla_{u} w\right)+g\left(u, \nabla_{v} w\right) \\
+g\left(w, \nabla_{v} u\right)-g\left(v, \nabla_{w} u\right)-g\left(u, \nabla_{w} v\right)
\end{gathered}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
& u g(v, w)+v g(w, u)-w g(u, v)= \\
& g\left(\nabla_{u} v, w\right)+g(v,[u, w])+g(u,[v, w]) \\
& +g\left(w, \nabla_{v} u\right)
\end{aligned}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
& u g(v, w)+v g(w, u)-w g(u, v)= \\
& g\left(\nabla_{u} v, w\right)+g(v,[u, w])+g(u,[v, w]) \\
& +g(w,[v, u])+g\left(w, \nabla_{u} v\right)
\end{aligned}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
& \quad u g(v, w)+v g(w, u)-w g(u, v)= \\
& 2 g\left(w, \nabla_{u} v\right)+g(v,[u, w])+g(u,[v, w]) \\
& -g(w,[u, v])
\end{aligned}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
& u g(v, w)+v g(w, u)-w g(u, v)= \\
& 2 g\left(w, \nabla_{u} v\right)-g(v,[w, u])+g(u,[v, w]) \\
& -g(w,[u, v])
\end{aligned}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
2 g\left(w, \nabla_{u} v\right)= & u g(v, w)+v g(w, u)-w g(u, v) \\
& +g(v,[w, u])+g(w,[u, v])-g(u,[v, w])
\end{aligned}
$$

Proof. Torsion-free: $\nabla_{v} w-\nabla_{w} v=[v, w]$

$$
\begin{aligned}
g\left(w, \nabla_{u} v\right)= & \frac{1}{2}[u g(v, w)+v g(w, u)-w g(u, v) \\
& +g(v,[w, u])+g(w,[u, v])-g(u,[v, w])]
\end{aligned}
$$

