MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

March 11, 2021

Definition. A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field $g \in C^{\infty}(\odot^2 T^*M)$ **Definition.** A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field $g \in C^{\infty}(\odot^2 T^*M)$

which defines a positive-definite inner product on each tangent space T_pM : **Definition.** A Riemannian metric g on a smooth manifold M is a smooth symmetric tensor field $g \in C^{\infty}(\odot^2 T^*M)$

which defines a positive-definite inner product on each tangent space T_pM :

 $v \neq 0 \implies \mathbf{g}(v,v) > 0.$

Example. Since $T_p \mathbb{R}^n = \mathbb{R}^n$, usual dot product \langle , \rangle defines a Riemannian metric on \mathbb{R}^n :

$$\langle , \rangle = dx^1 \otimes dx^1 + \dots + dx^n \otimes dx^n$$

Example. Since $T_p \mathbb{R}^n = \mathbb{R}^n$, usual dot product \langle , \rangle defines a Riemannian metric on \mathbb{R}^n :

$$\langle , \rangle = dx^1 \otimes dx^1 + \dots + dx^n \otimes dx^n$$

Example. Consider embedded submanifold. $j: M^m \hookrightarrow \mathbb{R}^n$

Example. Since $T_p \mathbb{R}^n = \mathbb{R}^n$, usual dot product \langle , \rangle defines a Riemannian metric on \mathbb{R}^n :

$$\langle , \rangle = dx^1 \otimes dx^1 + \dots + dx^n \otimes dx^n$$

Example. Consider embedded submanifold. $j: M^m \hookrightarrow \mathbb{R}^n$

Restricting dot product \langle , \rangle to TM defines a Riemannian metric on M:

$$g = j^* (dx^1 \otimes dx^1 + \dots + dx^n \otimes dx^n).$$

If M is a smooth manifold, let $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

$$\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$$

denote the smooth tangent vector fields on M.

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$\nabla: \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$$
$$(u, v) \longmapsto \nabla_u v$$

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

 $\nabla: \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$ $(u, v) \longmapsto \nabla_u v$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

 $\nabla: \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$ $(u, v) \longmapsto \nabla_{u} v$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

 $\nabla_{u+v}w = \nabla_u w + \nabla_v w$

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$\nabla : \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$$
$$(u, v) \longmapsto \nabla_u v$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

 $\nabla_{u+v}w = \nabla_u w + \nabla_v w$ $\nabla_{fu}w = f\nabla_u w$

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$\nabla: \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$$
$$(u, v) \longmapsto \nabla_u v$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$\nabla_{u+v}w = \nabla_{u}w + \nabla_{v}w$$
$$\nabla_{fu}w = f\nabla_{u}w$$
$$\nabla_{u}(v+w) = \nabla_{u}v + \nabla_{u}w$$

 $\mathfrak{X} = \mathfrak{X}(M) := C^{\infty}(TM)$

denote the smooth tangent vector fields on M.

Definition. An affine connection ∇ on a smooth manifold M is an operation

$$\nabla : \mathfrak{X} \times \mathfrak{X} \longrightarrow \mathfrak{X}$$
$$(u, v) \longmapsto \nabla_u v$$

such that, for $u, v, w \in \mathfrak{X}$, and $f \in C^{\infty}$ one has

$$\nabla_{u+v}w = \nabla_{u}w + \nabla_{v}w$$
$$\nabla_{fu}w = f\nabla_{u}w$$
$$\nabla_{u}(v+w) = \nabla_{u}v + \nabla_{u}w$$
$$\nabla_{u}(fw) = (uf)w + f\nabla_{u}w$$

That is, if

$$u = u^j \frac{\partial}{\partial x^j}, \quad v = v^j \frac{\partial}{\partial x^j}$$

That is, if

$$u = u^j \frac{\partial}{\partial x^j}, \quad v = v^j \frac{\partial}{\partial x^j}$$

using the Einstein summation convention, then

That is, if

$$u = u^j \frac{\partial}{\partial x^j}, \quad v = v^j \frac{\partial}{\partial x^j}$$

using the Einstein summation convention, then

$$D_u v = (uv^j) \frac{\partial}{\partial x^j} = \left(u^i \frac{\partial v^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}$$

That is, if

$$u = \sum_{j=1}^{n} u^{j} \frac{\partial}{\partial x^{j}}, \quad v = \sum_{j=1}^{n} v^{j} \frac{\partial}{\partial x^{j}}$$

then

$$D_{u}v = \sum_{i,j=1}^{n} \left(u^{i} \frac{\partial v^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}$$

That is, if

$$v = v^j \frac{\partial}{\partial x^j}$$

using the Einstein summation convention, then

$$D_u v = (uv^j) \frac{\partial}{\partial x^j}$$

Example. $M^m \subset \mathbb{R}^n$ embedded submanifold.

Example. $M^m \subset \mathbb{R}^n$ embedded submanifold. At each $p \in M$, consider orthogonal projection

Example. $M^m \subset \mathbb{R}^n$ embedded submanifold. At each $p \in M$, consider orthogonal projection

$$T_p \mathbb{R}^n \to T_p M \\
 v \mapsto v^{\parallel}$$

Example. $M^m \subset \mathbb{R}^n$ embedded submanifold. At each $p \in M$, consider orthogonal projection $T_p \mathbb{R}^n \to T_p M$ $v \mapsto v^{\parallel}$

May then define an affine connection ∇ on M by $\nabla_u v = (D_u v)^{\parallel}$ **Theorem.** Let g be a Riemannian metric on M.

•
$$\nabla_v w - \nabla_w v = [v, w]$$

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

• $ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$

• torsion-free:

• torsion-free: $\mathcal{T}_{\nabla} = 0$

• torsion-free: $\mathcal{T}_{\nabla} = 0$

$$\mathcal{T}_{\nabla}(v,w) := \nabla_v w - \nabla_w v - [v,w]$$

- torsion-free; and
- metric compatible:

- torsion-free; and
- metric compatible: $\nabla g = 0$.

- torsion-free; and
- metric compatible: $\nabla g = 0$.

$$(\nabla g)(u, v, w) := ug(v, w) - g(\nabla_u v, w) - g(v, \nabla_u w)$$

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

•
$$\nabla_u g(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w).$$

•
$$\nabla_v w - \nabla_w v = [v, w];$$
 and

• $ug(v,w) = g(\nabla_u v,w) + g(v,\nabla_u w).$

Proof.

$$ug(v,w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$

$$ug(v,w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$

$$vg(w,u) = g(\nabla_v w, u) + g(w, \nabla_v u)$$

$$ug(v, w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$
$$vg(w, u) = g(\nabla_v w, u) + g(w, \nabla_v u)$$
$$wg(u, v) = g(\nabla_w u, v) + g(u, \nabla_w v)$$

$$ug(v,w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$

$$vg(w,u) = g(\nabla_v w, u) + g(w, \nabla_v u)$$

$$-wg(u,v) = -g(\nabla_w u,v) - g(u,\nabla_w v)$$

$$ug(v,w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$

$$vg(w, u) = g(\nabla_v w, u) + g(w, \nabla_v u)$$

$$-wg(u,v) = -g(\nabla_w u,v) - g(u,\nabla_w v)$$

$$ug(v,w) = g(\nabla_u v, w) + g(v, \nabla_u w)$$

$$vg(w,u) = g(\nabla_v w, u) + g(w, \nabla_v u)$$

$$-wg(u,v) = -g(\nabla_w u,v) - g(u,\nabla_w v)$$

$$u \mathbf{g}(v, w) + v \mathbf{g}(w, u) - w \mathbf{g}(u, v) =$$

$$g(\nabla_u v, w) + g(v, \nabla_u w) + g(\nabla_v w, u)$$

$$+g(w,
abla_v u) - g(
abla_w u, v) - g(u,
abla_w v)$$

$$ug(v, w) + vg(w, u) - wg(u, v) =$$
$$g(\nabla_u v, w) + g(v, \nabla_u w) + g(\nabla_v w, u)$$

$$+g(w,\nabla_{v}u)-g(\nabla_{w}u,v)-g(u,\nabla_{w}v)$$

Proof. Torsion-free:

$$ug(v,w) + vg(w,u) - wg(u,v) =$$
$$g(\nabla_u v, w) + g(v, \nabla_u w) + g(\nabla_v w, u)$$

$$+g(w,
abla_v u) - g(
abla_w u, v) - g(u,
abla_w v)$$

$$ug(v,w) + vg(w,u) - wg(u,v) =$$
$$g(\nabla_u v, w) + g(v, \nabla_u w) + g(\nabla_v w, u)$$
$$+g(w, \nabla_v u) - g(\nabla_w u, v) - g(u, \nabla_w v)$$

$$ug(v,w) + vg(w,u) - wg(u,v) =$$
$$g(\nabla_u v, w) + g(v, \nabla_u w) + g(u, \nabla_v w)$$

$$+g(w,\nabla_v u) - g(v,\nabla_w u) - g(u,\nabla_w v)$$

$$ug(v, w) + vg(w, u) - wg(u, v) =$$
$$g(\nabla_u v, w) + g(v, [u, w]) + g(u, [v, w])$$
$$+g(w, \nabla_v u)$$

$$ug(v, w) + vg(w, u) - wg(u, v) =$$
$$g(\nabla_u v, w) + g(v, [u, w]) + g(u, [v, w])$$
$$+g(w, [v, u]) + g(w, \nabla_u v)$$

$$ug(v, w) + vg(w, u) - wg(u, v) =$$

$$2g(w, \nabla_u v) + g(v, [u, w]) + g(u, [v, w])$$

$$-g(w, [u, v])$$

$$ug(v, w) + vg(w, u) - wg(u, v) =$$

$$2g(w, \nabla_u v) - g(v, [w, u]) + g(u, [v, w])$$

$$-g(w, [u, v])$$

$$2g(w, \nabla_u v) = ug(v, w) + vg(w, u) - wg(u, v) +g(v, [w, u]) + g(w, [u, v]) - g(u, [v, w])$$

$$g(w, \nabla_u v) = \frac{1}{2} \Big[ug(v, w) + vg(w, u) - wg(u, v) \\ + g(v, [w, u]) + g(w, [u, v]) - g(u, [v, w]) \Big]$$