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Definition. A Riemannian metric g on a smooth
manifold M is a smooth symmetric tensor field

g ∈ C∞(�2T ∗M)
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Definition. A Riemannian metric g on a smooth
manifold M is a smooth symmetric tensor field

g ∈ C∞(�2T ∗M)

which defines a positive-definite inner product
on each tangent space TpM :

v 6= 0 =⇒ g(v, v) > 0.
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Example. Since TpRn = Rn, usual dot product
〈 , 〉 defines a Riemannian metric on Rn:

〈 , 〉 = dx1 ⊗ dx1 + · · · + dxn ⊗ dxn
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Example. Since TpRn = Rn, usual dot product
〈 , 〉 defines a Riemannian metric on Rn:

〈 , 〉 = dx1 ⊗ dx1 + · · · + dxn ⊗ dxn

Example. Consider embedded submanifold.

j : Mm ↪→ Rn

Restricting dot product 〈 , 〉 to TM defines a
Riemannian metric on M :

g = j∗(dx1 ⊗ dx1 + · · · + dxn ⊗ dxn).
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If M is a smooth manifold, let
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If M is a smooth manifold, let

X = X(M) := C∞(TM)

denote the smooth tangent vector fields on M .

Definition. An affine connection ∇ on a smooth
manifold M is an operation

∇ : X× X −→ X

(u, v) 7−→ ∇uv

such that, for u, v, w ∈ X, and f ∈ C∞ one has

∇u+vw = ∇uw +∇vw

∇fuw = f∇uw

∇u(v + w) = ∇uv +∇uw
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If M is a smooth manifold, let

X = X(M) := C∞(TM)

denote the smooth tangent vector fields on M .

Definition. An affine connection ∇ on a smooth
manifold M is an operation

∇ : X× X −→ X

(u, v) 7−→ ∇uv

such that, for u, v, w ∈ X, and f ∈ C∞ one has

∇u+vw = ∇uw +∇vw

∇fuw = f∇uw

∇u(v + w) = ∇uv +∇uw

∇u(fw) = (uf )w + f∇uw
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Example. The “standard connection” D on M =
Rn is defined by component-by-component different
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Example. The “standard connection” D on M =
Rn is defined by component-by-component differen-
tiation.
That is, if

u = uj
∂

∂xj
, v = vj

∂

∂xj
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Example. The “standard connection” D on M =
Rn is defined by component-by-component differen-
tiation.
That is, if

u = uj
∂

∂xj
, v = vj

∂

∂xj

using the Einstein summation convention, then

Duv = (uvj)
∂

∂xj
=

(
ui
∂vj

∂xi

)
∂

∂xj
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Example. The “standard connection” D on M =
Rn is defined by component-by-component differen-
tiation.
That is, if

u =

n∑
j=1

uj
∂

∂xj
, v =

n∑
j=1

vj
∂

∂xj

then

Duv =

n∑
i,j=1

(
ui
∂vj

∂xi

)
∂

∂xj
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Example. The “standard connection” D on M =
Rn is defined by component-by-component differen-
tiation.
That is, if

v = vj
∂

∂xj

using the Einstein summation convention, then

Duv = (uvj)
∂

∂xj
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Example. Mm ⊂ Rn embedded submanifold.
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Example. Mm ⊂ Rn embedded submanifold.

At each p ∈M , consider orthogonal projection
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Example. Mm ⊂ Rn embedded submanifold.

At each p ∈M , consider orthogonal projection

TpRn → TpM

v 7→ v‖

May then define an affine connection ∇ on M by

∇uv = (Duv)‖
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Theorem. Let g be a Riemannian metric on M .
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
such that
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
such that

• ∇vw −∇wv = [v, w] ; and
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
such that

• ∇vw −∇wv = [v, w]; and

• ug(v, w) = g(∇uv, w) + g(v,∇uw).
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
that is

• torsion-free: T∇ = 0

T∇(v, w) := ∇vw −∇wv − [v, w]
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
that is

• torsion-free; and

•metric compatible: ∇g = 0.
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Theorem. Let g be a Riemannian metric on M .
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
that is

• torsion-free; and

•metric compatible: ∇g = 0.

(∇g)(u, v, w) := ug(v, w)−g(∇uv, w)−g(v,∇uw)
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Theorem. Let g be a Riemannian metric on M .
Then M admits a unique affine connection ∇
such that
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Proof. Metric compatibility:

ug(v, w) = g(∇uv, w) + g(v,∇uw)
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Proof. Metric compatibility:
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Proof. Metric compatibility:

ug(v, w) = g(∇uv, w) + g(v,∇uw)

vg(w, u) = g(∇vw, u) + g(w,∇vu)

−wg(u, v) = −g(∇wu, v)− g(u,∇wv)
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Proof. Metric compatibility:
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Proof. Metric compatibility:

ug(v, w) = g(∇uv, w) + g(v,∇uw)

vg(w, u) = g(∇vw, u) + g(w,∇vu)

−wg(u, v) = −g(∇wu, v)− g(u,∇wv)

ug(v, w) + vg(w, u)− wg(u, v) =

g(∇uv, w) + g(v,∇uw) + g(∇vw, u)

+g(w,∇vu)− g(∇wu, v)− g(u,∇wv)
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Proof. Metric compatibility:

ug(v, w) + vg(w, u)− wg(u, v) =

g(∇uv, w) + g(v,∇uw) + g(∇vw, u)

+g(w,∇vu)− g(∇wu, v)− g(u,∇wv)
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Proof. Torsion-free:

ug(v, w) + vg(w, u)− wg(u, v) =

g(∇uv, w) + g(v,∇uw) + g(∇vw, u)

+g(w,∇vu)− g(∇wu, v)− g(u,∇wv)
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

ug(v, w) + vg(w, u)− wg(u, v) =

g(∇uv, w) + g(v, [u,w]) + g(u, [v, w])

+g(w,∇vu)−g(v,Dwu)− g(u,Dwv)
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

ug(v, w) + vg(w, u)− wg(u, v) =

g(∇uv, w) + g(v, [u,w]) + g(u, [v, w])

+g(w, [v, u]) + g(w,∇uv)−g(u,Dwv)
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

ug(v, w) + vg(w, u)− wg(u, v) =

2g(w,∇uv) + g(v, [u,w]) + g(u, [v, w])

−g(w, [u, v])−g(v,Dwu)− g(u,Dwv)
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

ug(v, w) + vg(w, u)− wg(u, v) =

2g(w,∇uv)− g(v, [w, u]) + g(u, [v, w])

−g(w, [u, v])−g(v,Dwu)− g(u,Dwv)
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

2g(w,∇uv) = ug(v, w) + vg(w, u)− wg(u, v)

+g(v, [w, u]) + g(w, [u, v])− g(u, [v, w])
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Proof. Torsion-free: ∇vw −∇wv = [v, w]

g(w,∇uv) = 1
2

[
ug(v, w) + vg(w, u)− wg(u, v)

+g(v, [w, u]) + g(w, [u, v])− g(u, [v, w])
]
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