
Homework # 2

MAT 552

Due 4/21/21 at 11 pm

Do at least five problems. Extra credit for doing more!

1. Let (M, g) and (N, h) be connected Riemannian manifolds of the same
dimension n, and suppose that

Φ : M → N

is a smooth map such that Φ∗h = g. (Such a map is called a local isometry.)

(a) Prove that Φ is a local diffeomorphism.

(b) If γ is a geodesic in (M, g), show that Φ ◦ γ is a geodesic in (N, h).

(c) If (M, g) is geodesically complete at p, show that (N, h) is geodesically
complete at Φ(p).

(d) If (M, g) is geodesically complete, use the Hopf-Rinow Theorem to show
that Φ must therefore be surjective.

(e) If (M, g) is complete, show that Φ must be a covering map. (To do
this, first show that the inverse image of a geodesically convex ball Bε(q)
of sufficiently small radius ε about q ∈ N is the union of the balls Bε(pj),
where Φ−1({q}) = {pj} ⊂M . Then show that these balls in M are actually
disjoint, and that each is carried diffeomorphically to Bε(q) by Φ.)
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2. Let (M, g) be a connected Riemannian n-manifold, and let

Φ : M →M

be a smooth map such that Φ∗g = g. Such a metric-compatible map will be
called a local self-isometry of the Riemannian manifold (M, g). If Φ is also a
diffeomorphism, one then says that Φ is an isometry of (M, g).

If (M, g) is complete and simply connected, use problem 1 to show that
any local self-isometry Φ of (M, g) is a diffeomorphism. Then show that this
implies that Φ and Φ−1 are both isometries, and that Φ preserves Riemannian
distance, in the sense that, for any p, q ∈M ,

dist(Φ(p),Φ(q)) = dist(p, q). (1)

3. Let (N, h) be a complete connected Riemannian manifold, and let

$ : M → N

be a covering map. Equip M with the pulled-back metric g = $∗h, so that
$ becomes a local isometry in the sense of problem 1. Use the Hopf-Rinow
Theorem to show that (M, g) is then a complete Riemannian manifold.

4. Let (M, g) be a connected Riemannian manifold. If Φ : M → M is a set-
theoretic function that preserves Riemannian distance in the sense of (1),
show that Φ is smooth, and is an isometry in the sense of problem 2.

5. Let G be a connected Lie group with Lie algebra g, and let B : g× g→ R
be its Killing form, as defined by

B(X, Y ) = trace (AdX ◦ AdY ). (2)

Show that
B([X, Y ], Z) +B(Y, [X,Z]) = 0

for any X, Y, Z ∈ g, and then use this to prove that B defines a bi-invariant
symmetric tensor field on G. If G is compact and the center z ⊂ g is zero,
then give a Riemannian explanation for the bi-invariance of B, and then use
this approach to show that −B is a bi-invariant Riemannian metric on G.
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6. The Lie group SU(n) is compact, and so admits a bi-invariant Riemannian
metric g. Show that while such a metric always has strictly positive Ricci
curvature, it does not have (strictly) positive sectional curvature if n ≥ 3.

7. Recall that a Lie algebra g over C is by definition a C-vector space g,
equipped with a skew-symmetric complex-bilinear map

[ , ] : g× g→ g

that satisfies the Jacobi identity. Since a complex-bilinear map is also real-
bilinear, this means that g may also be viewed as a Lie algebra gR over R.

In view of this, (2) actually defines two versions, BR and BC, of the Killing
form, depending on whether the relevant linear algebra is carried out over R
or C. How are these related? State and prove a simple formula that expresses
BR in terms of BC.

8. If V is a real vector space, the complex vector space V ⊗R C = V ⊕ iV
is called the complexification of V. Given a real Lie algebra g, prove that
the vector space gC := g⊗R C can be made into a complex Lie algebra in a
unique way such that restricting the Lie bracket from gC to g = g⊕ i0 is the
original Lie bracket on g. The resulting complex Lie algebra gC is called the
complexification of g, while g is called a real form of gC.

Prove that su(n) and sl(n,R) are both real forms of sl(n,C).

9. Let G be a real Lie group, let GC be a complex Lie group, and suppose
that we are given a smooth embedding G ↪→ GC as a closed Lie subgroup.
We then say that G is a real form of GC, and that GC is a complexification of
G, if the Lie algebra of GC is isomorphic to the complexification gC = g⊕ ig,
in a manner that identifies g⊕ i0 with image of g under the derivative of the
embedding.

Show that SL(n,R) and SU(n) are both real forms of SL(n,C). How are
the Killing forms of these three Lie groups related?
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10. According to the definition used in class,

Sp(n) = GL(n,H) ∩O(4n)

where H = R4 denotes the non-commutative field of quaternions, and where
GL(n,H) is the group of real-linear transformations L of Hn = R4n which
are right-quaternionic-linear, in the sense that

L(~vq) = L(~v)q ∀~v ∈ Hn, q ∈ H.

(a) Prove that the above definition is equivalent to the following:

Sp(n) = {L ∈ U(2n) | L∗Ω = Ω}

where Ω is the complex-valued 2-form

Ω = dz1 ∧ dz2 + dz3 ∧ dz4 + · · ·+ dz2n−1 ∧ dz2n

on C2n, where (z1, . . . , z2n) are the standard complex coordinates.

(b) Let
Sp(n,C) = {L ∈ GL(2n,C) | L∗Ω = Ω},

where Ω is the complex-valued 2-form defined in part (a). Prove that Sp(n,C)
is a complex Lie group, and is a complexification of Sp(n).

(c) Let
Sp(n,R) = {L ∈ GL(2n,R) | L∗ω = ω},

where ω is the real-valued 2-form on R2n given by

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n. (3)

Prove that Sp(n,R) is yet another real form of Sp(n,C).

Historical note: Closed non-degenerate 2-forms modeled on (3) are called
symplectic forms, and the abbreviation Sp stands for symplectic. This term
was coined by Hermann Weyl as a sophisticated parody of complex:

com (Latin) + plex (Greek) = together + braided = braided together

sym (Greek) + plectic (Latin) = together + braided = braided together
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