Homework \# 2

MAT 552
Due $4 / 21 / 21$ at 11 pm

Do at least five problems. Extra credit for doing more!

1. Let (M, g) and (N, h) be connected Riemannian manifolds of the same dimension n, and suppose that

$$
\Phi: M \rightarrow N
$$

is a smooth map such that $\Phi^{*} h=g$. (Such a map is called a local isometry.)
(a) Prove that Φ is a local diffeomorphism.
(b) If γ is a geodesic in (M, g), show that $\Phi \circ \gamma$ is a geodesic in (N, h).
(c) If (M, g) is geodesically complete at p, show that (N, h) is geodesically complete at $\Phi(p)$.
(d) If (M, g) is geodesically complete, use the Hopf-Rinow Theorem to show that Φ must therefore be surjective.
(e) If (M, g) is complete, show that Φ must be a covering map. (To do this, first show that the inverse image of a geodesically convex ball $B_{\varepsilon}(q)$ of sufficiently small radius ε about $q \in N$ is the union of the balls $B_{\varepsilon}\left(p_{j}\right)$, where $\Phi^{-1}(\{q\})=\left\{p_{j}\right\} \subset M$. Then show that these balls in M are actually disjoint, and that each is carried diffeomorphically to $B_{\varepsilon}(q)$ by Φ.)
2. Let (M, g) be a connected Riemannian n-manifold, and let

$$
\Phi: M \rightarrow M
$$

be a smooth map such that $\Phi^{*} g=g$. Such a metric-compatible map will be called a local self-isometry of the Riemannian manifold (M, g). If Φ is also a diffeomorphism, one then says that Φ is an isometry of (M, g).

If (M, g) is complete and simply connected, use problem 1 to show that any local self-isometry Φ of (M, g) is a diffeomorphism. Then show that this implies that Φ and Φ^{-1} are both isometries, and that Φ preserves Riemannian distance, in the sense that, for any $p, q \in M$,

$$
\begin{equation*}
\operatorname{dist}(\Phi(p), \Phi(q))=\operatorname{dist}(p, q) \tag{1}
\end{equation*}
$$

3. Let (N, h) be a complete connected Riemannian manifold, and let

$$
\varpi: M \rightarrow N
$$

be a covering map. Equip M with the pulled-back metric $g=\varpi^{*} h$, so that ϖ becomes a local isometry in the sense of problem 1. Use the Hopf-Rinow Theorem to show that (M, g) is then a complete Riemannian manifold.
4. Let (M, g) be a connected Riemannian manifold. If $\Phi: M \rightarrow M$ is a settheoretic function that preserves Riemannian distance in the sense of (1), show that Φ is smooth, and is an isometry in the sense of problem 2 .
5. Let G be a connected Lie group with Lie algebra \mathfrak{g}, and let $B: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ be its Killing form, as defined by

$$
\begin{equation*}
B(X, Y)=\operatorname{trace}\left(A d_{X} \circ A d_{Y}\right) \tag{2}
\end{equation*}
$$

Show that

$$
B([X, Y], Z)+B(Y,[X, Z])=0
$$

for any $X, Y, Z \in \mathfrak{g}$, and then use this to prove that B defines a bi-invariant symmetric tensor field on G. If G is compact and the center $\mathfrak{z} \subset \mathfrak{g}$ is zero, then give a Riemannian explanation for the bi-invariance of B, and then use this approach to show that $-B$ is a bi-invariant Riemannian metric on G.
6. The Lie group $\mathbf{S U}(n)$ is compact, and so admits a bi-invariant Riemannian metric g. Show that while such a metric always has strictly positive Ricci curvature, it does not have (strictly) positive sectional curvature if $n \geq 3$.
7. Recall that a Lie algebra \mathfrak{g} over \mathbb{C} is by definition a \mathbb{C}-vector space \mathfrak{g}, equipped with a skew-symmetric complex-bilinear map

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

that satisfies the Jacobi identity. Since a complex-bilinear map is also realbilinear, this means that \mathfrak{g} may also be viewed as a Lie algebra $\mathfrak{g}_{\mathbb{R}}$ over \mathbb{R}.

In view of this, (2) actually defines two versions, $B_{\mathbb{R}}$ and $B_{\mathbb{C}}$, of the Killing form, depending on whether the relevant linear algebra is carried out over \mathbb{R} or \mathbb{C}. How are these related? State and prove a simple formula that expresses $B_{\mathbb{R}}$ in terms of $B_{\mathbb{C}}$.
8. If \mathbb{V} is a real vector space, the complex vector space $\mathbb{V} \otimes_{\mathbb{R}} \mathbb{C}=\mathbb{V} \oplus i \mathbb{V}$ is called the complexification of \mathbb{V}. Given a real Lie algebra \mathfrak{g}, prove that the vector space $\mathfrak{g}_{\mathbb{C}}:=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ can be made into a complex Lie algebra in a unique way such that restricting the Lie bracket from $\mathfrak{g}_{\mathbb{C}}$ to $\mathfrak{g}=\mathfrak{g} \oplus i 0$ is the original Lie bracket on \mathfrak{g}. The resulting complex Lie algebra $\mathfrak{g}_{\mathbb{C}}$ is called the complexification of \mathfrak{g}, while \mathfrak{g} is called a real form of $\mathfrak{g}_{\mathbb{C}}$.

Prove that $\mathfrak{s u}(n)$ and $\mathfrak{s l}(n, \mathbb{R})$ are both real forms of $\mathfrak{s l}(n, \mathbb{C})$.
9. Let G be a real Lie group, let $\mathrm{G}_{\mathbb{C}}$ be a complex Lie group, and suppose that we are given a smooth embedding $G \hookrightarrow G_{\mathbb{C}}$ as a closed Lie subgroup. We then say that G is a real form of $\mathrm{G}_{\mathbb{C}}$, and that $\mathrm{G}_{\mathbb{C}}$ is a complexification of G , if the Lie algebra of $\mathrm{G}_{\mathbb{C}}$ is isomorphic to the complexification $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \oplus i \mathfrak{g}$, in a manner that identifies $\mathfrak{g} \oplus i 0$ with image of \mathfrak{g} under the derivative of the embedding.

Show that $\mathbf{S L}(n, \mathbb{R})$ and $\mathbf{S U}(n)$ are both real forms of $\mathbf{S L}(n, \mathbb{C})$. How are the Killing forms of these three Lie groups related?
10. According to the definition used in class,

$$
\mathbf{S p}(n)=\mathbf{G} \mathbf{L}(n, \mathbb{H}) \cap \mathbf{O}(4 n)
$$

where $\mathbb{H}=\mathbb{R}^{4}$ denotes the non-commutative field of quaternions, and where $\mathbf{G L}(n, \mathbb{H})$ is the group of real-linear transformations L of $\mathbb{H}^{n}=\mathbb{R}^{4 n}$ which are right-quaternionic-linear, in the sense that

$$
L(\vec{v} q)=L(\vec{v}) q \quad \forall \vec{v} \in \mathbb{H}^{n}, q \in \mathbb{H}
$$

(a) Prove that the above definition is equivalent to the following:

$$
\mathbf{S p}(n)=\left\{L \in \mathbf{U}(2 n) \mid L^{*} \Omega=\Omega\right\}
$$

where Ω is the complex-valued 2 -form

$$
\Omega=d z^{1} \wedge d z^{2}+d z^{3} \wedge d z^{4}+\cdots+d z^{2 n-1} \wedge d z^{2 n}
$$

on $\mathbb{C}^{2 n}$, where $\left(z^{1}, \ldots, z^{2 n}\right)$ are the standard complex coordinates.
(b) Let

$$
\mathbf{S p}(n, \mathbb{C})=\left\{L \in \mathbf{G L}(2 n, \mathbb{C}) \mid L^{*} \Omega=\Omega\right\}
$$

where Ω is the complex-valued 2-form defined in part (a). Prove that $\mathbf{S p}(n, \mathbb{C})$ is a complex Lie group, and is a complexification of $\mathbf{S p}(n)$.
(c) Let

$$
\mathbf{S p}(n, \mathbb{R})=\left\{L \in \mathbf{G} \mathbf{L}(2 n, \mathbb{R}) \mid L^{*} \omega=\omega\right\}
$$

where ω is the real-valued 2 -form on $\mathbb{R}^{2 n}$ given by

$$
\begin{equation*}
\omega=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}+\cdots+d x^{2 n-1} \wedge d x^{2 n} \tag{3}
\end{equation*}
$$

Prove that $\mathbf{S p}(n, \mathbb{R})$ is yet another real form of $\mathbf{S p}(n, \mathbb{C})$.
Historical note: Closed non-degenerate 2-forms modeled on (3) are called symplectic forms, and the abbreviation $\mathbf{S p}$ stands for symplectic. This term was coined by Hermann Weyl as a sophisticated parody of complex:

```
com (Latin) + plex (Greek) = together + braided = braided together
sym (Greek) + plectic (Latin) = together + braided = braided together
```

