MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 9, 2021

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.
I'll typically denote identity element by $\mathrm{e} \in \mathrm{G}$.

Example. Let $G=\mathbf{G L}(n, \mathbb{R})$ be the set of invertible $n \times n$ real matrices:

Example. Let $G=\mathbf{G L}(n, \mathbb{R})$ be the set of invertible $n \times n$ real matrices:
$\mathbf{G L}(n, \mathbb{R})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A} \neq 0\right\}$

Example. Let $G=\mathbf{G L}(n, \mathbb{R})$ be the set of invertible $n \times n$ real matrices:
$\mathbf{G L}(n, \mathbb{R})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq 0\right\}$

We noted that this example is non-compact.

Example. Let $G=\mathbf{G L}(n, \mathbb{R})$ be the set of invertible $n \times n$ real matrices:
$\mathbf{G L}(n, \mathbb{R})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A} \neq 0\right\}$

We noted that this example is non-compact.
We also observed that it's not connected.

Example. Let $G=\mathbf{G L}(n, \mathbb{R})$ be the set of invertible $n \times n$ real matrices:
$\mathbf{G L}(n, \mathbb{R})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq 0\right\}$

We noted that this example is non-compact.
We also observed that it's not connected.
Today we'll prove: has exactly two components.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1 :

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1:

$$
\mathbf{S L}(n, \mathbb{R})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
: & & : \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}
$$

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1 :
$\mathbf{S L}(n, \mathbb{R})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A}=1\right\}$
Manifold of dimension $n^{2}-1$,

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1 :
$\mathbf{S L}(n, \mathbb{R})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A}=1\right\}$
Manifold of dimension $n^{2}-1$,
because smooth hypersurface in $\mathbb{R}^{n^{2}}$.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1 :
$\mathbf{S L}(n, \mathbb{R})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}$
Manifold of dimension $n^{2}-1$,
because smooth hypersurface in $\mathbb{R}^{n^{2}}$.
This example is also non-compact.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{R})$ be the set of $n \times n$ real matrices of determinant 1:
$\mathbf{S L}(n, \mathbb{R})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A}=1\right\}$
Manifold of dimension $n^{2}-1$,
because smooth hypersurface in $\mathbb{R}^{n^{2}}$.
This example is also non-compact.
Today we'll prove that it's connected.

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:

$$
\mathbf{G L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A} \neq 0\right\}
$$

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:
$\mathbf{G} \mathbf{L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A} \neq 0\right\}$
Manifold because open set in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:
$\mathbf{G L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}\mathrm{a}_{11} & \cdots & \mathrm{a}_{1 n} \\ \vdots & & \vdots \\ \mathrm{a}_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A} \neq 0\right\}$
Manifold because open set in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
Complement of zeroes of polynomial $\mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$.

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:
$\mathbf{G L}(n, \mathbb{C})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq 0\right\}$
Manifold because open set in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
Complement of zeroes of polynomial $\mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$.
So connected and not compact.

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:
$\mathbf{G L}(n, \mathbb{C})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq 0\right\}$
Manifold because open set in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
Complement of zeroes of polynomial $\mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$.
So connected and not compact.
We'll see other proofs today.

Example. Let $G=\mathbf{G L}(n, \mathbb{C})$ be the set of invertible $n \times n$ complex matrices:
$\mathbf{G L}(n, \mathbb{C})=\left\{\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \quad \operatorname{det} \mathbf{A} \neq 0\right\}$
Manifold because open set in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
Complement of zeroes of polynomial $\mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$.
So connected and not compact.
We'll see other proofs today.
We previously also saw not simply connected.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1 .

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1 .

$$
\mathbf{S L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
: & & : \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}
$$

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1 .
$\mathbf{S L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}$
Lie group of dimension $2 n^{2}-2$.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1 .
$\mathbf{S L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}$
Lie group of dimension $2 n^{2}-2$.
Complex Lie group of complex dimension $n^{2}-1$.

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1.
$\mathbf{S L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}$
Lie group of dimension $2 n^{2}-2$.
Complex Lie group of complex dimension $n^{2}-1$.
We will show that it is connected,

Example. Let $\mathrm{G}=\mathbf{S L}(n, \mathbb{C})$ be the set of $n \times n$ complex matrices of determinant 1.
$\mathbf{S L}(n, \mathbb{C})=\left\{\left.\mathbf{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \right\rvert\, \operatorname{det} \mathbf{A}=1\right\}$
Lie group of dimension $2 n^{2}-2$.
Complex Lie group of complex dimension $n^{2}-1$.
We will show that it is connected, and also simply connected.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:

$$
\begin{aligned}
\mathbf{U}(n) & =\left\{\text { length-preserving } \mathbb{C} \text {-vector-space isom'isms } \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \\
& =\left\{\langle,\rangle \text {-preserving vector-space isomorphisms } \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \\
& =\left\{\text { orthonormal bases for } \mathbb{C}^{n}\right\} \\
& =\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\
\vdots & & \vdots \\
\bar{a}_{1 n} & \cdots & \bar{a}_{n n}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{a}_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \cdots & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
$\left[\begin{array}{ccc}\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\ \vdots & & \vdots \\ \bar{a}_{1 n} & \cdots & \bar{a}_{n n}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
A*A automatically Hermitian.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
$\left[\begin{array}{ccc}\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\ \vdots & & \vdots \\ \bar{a}_{1 n} & \cdots & \bar{a}_{n n}\end{array}\right]\left[\begin{array}{ccc}\mathrm{a}_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
A*A automatically Hermitian.
So cut out by n^{2} real equations in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
$\left[\begin{array}{ccc}\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\ \vdots & & \vdots \\ \bar{a}_{1 n} & \cdots & \bar{a}_{n n}\end{array}\right]\left[\begin{array}{ccc}\mathrm{a}_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
A*A automatically Hermitian.
So cut out by n^{2} real equations in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
Transverse to zero, so manifold of dimension n^{2}.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
$\left[\begin{array}{ccc}\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\ \vdots & & \vdots \\ \bar{a}_{1 n} & \cdots & \bar{a}_{n n}\end{array}\right]\left[\begin{array}{ccc}\mathrm{a}_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
A*A automatically Hermitian.
So cut out by n^{2} real equations in $\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$.
So this Lie group has dimension n^{2}.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
$\left[\begin{array}{ccc}\bar{a}_{11} & \cdots & \bar{a}_{n 1} \\ \vdots & & \vdots \\ \bar{a}_{1 n} & \cdots & \bar{a}_{n n}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
Notice that $\mathbf{U}(n)$ is compact!

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

Consider loop

$$
\left(\begin{array}{cccc}
e^{i \theta} & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) \in \mathbf{U}(n)
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

Consider loop

$$
\operatorname{det}\left(\begin{array}{cccc}
e^{i \theta} & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)=e^{i \theta}
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

So det: $\mathbf{U}(n) \rightarrow S^{1}$ induces surjection

$$
\operatorname{det}_{*}: \pi_{1}(\mathbf{U}(n), \mathbf{I}) \rightarrow \pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

So det: $\mathbf{U}(n) \rightarrow S^{1}$ induces surjection

$$
\operatorname{det}_{*}: \pi_{1}(\mathbf{U}(n), \mathbf{I}) \rightarrow \pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}
$$

Thus $\mathbf{U}(n)$ is not simply connected!

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$|\operatorname{det} \mathbf{A}|^{2}=\left(\operatorname{det} \mathbf{A}^{*}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{*} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$.
So

$$
\operatorname{det} \mathbf{A} \in S^{1} \subset \mathbb{C}
$$

So det: $\mathbf{U}(n) \rightarrow S^{1}$ induces surjection

$$
\operatorname{det}_{*}: \pi_{1}(\mathbf{U}(n), \mathbf{I}) \rightarrow \pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}
$$

Thus $\mathbf{U}(n)$ is not simply connected!
However...

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:

$$
\begin{aligned}
\mathbf{U}(n) & =\left\{\text { length-preserving } \mathbb{C} \text {-vector-space isom'isms } \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \\
& =\left\{\langle,\rangle \text {-preserving vector-space isomorphisms } \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\} \\
& =\left\{\text { orthonormal bases for } \mathbb{C}^{n}\right\} \\
& =\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}
\end{aligned}
$$

Proposition. $\mathbf{U}(n)$ is connected.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given A: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary,

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given A: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary,
its eigenspaces are mutually orthogonal \& span \mathbb{C}^{n}.

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given $\mathrm{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary, so
\exists orthonormal basis for \mathbb{C}^{n} in which \mathbf{A} has matrix

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given A: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary, so
\exists orthonormal basis for \mathbb{C}^{n} in which \mathbf{A} has matrix

$$
\left(\begin{array}{cccc}
e^{i \theta_{1}} & & & \\
& e^{i \theta_{2}} & & \\
& & \ddots & \\
& & & e^{i \theta_{n}}
\end{array}\right)
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given A: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary,
hence can join \mathbf{I} to \mathbf{A} by the path

$$
\left(\begin{array}{llll}
e^{i \theta_{1}} & & & \\
& e^{i \theta_{2}} & & \\
& & \ddots & \\
& & & e^{i \theta_{n}}
\end{array}\right)
$$

Example. Let $\mathrm{G}=\mathbf{U}(n)$ be unitary group:
$\mathbf{U}(n)=\left\{\right.$ length-preserving \mathbb{C}-vector-space isom'isms $\left.\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{C}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{C}) \quad \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}\right\}$

Proposition. $\mathbf{U}(n)$ is connected.
Proof. Given A: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ unitary,
hence can join I to A by the path

$$
A(t)=\left(\begin{array}{cccc}
e^{i t \theta_{1}} & & & \\
& e^{i t \theta_{2}} & & \\
& & \ddots & \\
& & & e^{i t \theta_{n}}
\end{array}\right), \quad t \in[0,1]
$$

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Proposition. $\mathbf{S U}(n)$ is connected.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Proposition. $\mathbf{S U}(n)$ is connected.
Proof. \exists basis for \mathbb{C}^{n} in which \mathbf{A} has matrix

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Proposition. $\mathbf{S U}(n)$ is connected.
Proof. \exists basis for \mathbb{C}^{n} in which \mathbf{A} has matrix

$$
\begin{aligned}
& \left(\begin{array}{cccc}
e^{i \theta_{1}} & & & \\
& e^{i \theta_{2}} & & \\
& & \ddots & \\
& & & e^{i \theta_{n}}
\end{array}\right) \\
& \text { with } \quad \theta_{1}+\theta_{2}+\cdots+\theta_{n}=0 .
\end{aligned}
$$

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Proposition. $\mathbf{S U}(n)$ is connected.
Proof. So can again join \mathbf{I} to \mathbf{A} by the path

$$
A(t)=\left(\begin{array}{cccc}
e^{i t \theta_{1}} & & & \\
& e^{i t \theta_{2}} & & \\
& & \ddots & \\
& & & e^{i t \theta_{n}}
\end{array}\right), \quad t \in[0,1]
$$

where $t \theta_{1}+t \theta_{2}+\cdots+t \theta_{n}=0$.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.
Example. $\mathbf{S U}(2) \approx S^{3}$.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.
Example. $\mathbf{S U}(2) \approx S^{3}$.

$$
\mathbf{S U}(2)=\left\{\left.\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right)| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.
Example. $\mathbf{S U}(2) \approx S^{3}$.

Example. Let $G=\mathbf{S U}(n)$ be special unitary group:

$$
\mathbf{S U}(n)=\{\mathbf{A} \in \mathbf{U}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Compact Lie group of dimension $n^{2}-1$.
Example. $\mathbf{S U}(2) \approx S^{3}$.
We'll later show: $\mathbf{S U}(n)$ is simply connected $\forall n$.

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathrm{I}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:

$$
\begin{aligned}
& \mathbf{O}(n)=\left\{\text { length-preserving vector-space isom’isms } \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\} \\
&=\left\{\langle,\rangle \text {-preserving vector-space isomorphisms } \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\} \\
&=\left\{\text { orthonormal bases for } \mathbb{R}^{n}\right\} \\
&=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{R}) \left\lvert\, \begin{array}{cc}
\mathbf{A}^{t} \mathbf{A}=\mathbb{I}
\end{array}\right.\right\} \\
& {\left[\begin{array}{cccc}
\mathrm{a}_{11} & \cdots & \mathrm{a}_{n 1} \\
\vdots & & \vdots \\
\mathrm{a}_{1 n} & \cdots & \mathrm{a}_{n n}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{a}_{11} & \cdots & \mathrm{a}_{1 n} \\
\vdots & & \vdots \\
\mathrm{a}_{n 1} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & & \\
& 1 & & \\
& & \cdots & \\
& & 1 & \\
& & & 1
\end{array}\right] }
\end{aligned}
$$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathrm{~A}=\mathrm{I}\right\}$
$\left[\begin{array}{ccc}a_{11} & \cdots & a_{n 1} \\ \vdots & & \vdots \\ a_{1 n} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & & 1 \\ & & & 1\end{array}\right]$
$\mathrm{A}^{t} \mathrm{~A}$ automatically symmetric.

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathrm{I}\right\}$
$\left[\begin{array}{ccc}a_{11} & \cdots & a_{n 1} \\ \vdots & & \vdots \\ a_{1 n} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
$\mathrm{A}^{t} \mathrm{~A}$ automatically symmetric.
So cut out by $\frac{n(n+1)}{2}$ equations in $\mathbb{R}^{n^{2}}$.

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathrm{~A}=\mathrm{I}\right\}$
$\left[\begin{array}{ccc}a_{11} & \cdots & a_{n 1} \\ \vdots & & \vdots \\ a_{1 n} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & \cdots & \\ & & 1 & \\ & & & 1\end{array}\right]$
$\mathrm{A}^{t} \mathrm{~A}$ automatically symmetric.
So cut out by $\frac{n(n+1)}{2}$ equations in $\mathbb{R}^{n^{2}}$.
Transverse to zero, so manifold of dimension $\frac{n(n-1)}{2}$.

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbb{I}\right\}$
$\mathbf{O}(n)$ is a Lie group of dimension $\frac{n(n-1)}{2}$.

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathrm{~A}=\mathrm{I}\right\}$
$\mathbf{O}(n)$ is a Lie group of dimension $\frac{n(n-1)}{2}$.
Notice that $\mathbf{O}(n)$ is compact!

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathrm{I}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathrm{I}\right\}$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathbf{A}=\mathrm{I}\right\}$
If $\mathbf{A} \in \mathbf{O}(n)$, then

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathbf{A}=\mathrm{I}\right\}$
If $\mathbf{A} \in \mathbf{O}(n)$, then
$(\operatorname{det} \mathbf{A})^{2}=\left(\operatorname{det} \mathbf{A}^{t}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$
$=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathrm{A}^{t} \mathbf{A}=\mathrm{I}\right\}$
If $\mathbf{A} \in \mathbf{O}(n)$, then
$(\operatorname{det} \mathbf{A})^{2}=\left(\operatorname{det} \mathbf{A}^{t}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$
so

$$
\operatorname{det} \mathrm{A} \in\{ \pm 1\}
$$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$

$$
=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbb{I}\right\}
$$

If $\mathbf{A} \in \mathbf{O}(n)$, then
$(\operatorname{det} \mathbf{A})^{2}=\left(\operatorname{det} \mathbf{A}^{t}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$
so

$$
\operatorname{det} \mathrm{A} \in\{ \pm 1\}
$$

Both possibilities occur, because

$$
\left(\begin{array}{cccc}
\pm 1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)
$$

Example. Let $\mathrm{G}=\mathbf{O}(n)$ be orthogonal group:
$\mathbf{O}(n)=\left\{\right.$ length-preserving vector-space isom'isms $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\langle\right.$,$\left.\rangle -preserving vector-space isomorphisms \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$
$=\left\{\right.$ orthonormal bases for $\left.\mathbb{R}^{n}\right\}$

$$
=\left\{\mathbf{A} \in \mathbf{G} \mathbf{L}(n, \mathbb{R}) \quad \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbb{I}\right\}
$$

If $\mathbf{A} \in \mathbf{O}(n)$, then
$(\operatorname{det} \mathbf{A})^{2}=\left(\operatorname{det} \mathbf{A}^{t}\right)(\operatorname{det} \mathbf{A})=\operatorname{det}\left(\mathbf{A}^{t} \mathbf{A}\right)=\operatorname{det} \mathbf{I}=1$
so

$$
\operatorname{det} \mathrm{A} \in\{ \pm 1\}
$$

Both possibilities occur, because

$$
\operatorname{det}\left(\begin{array}{cccc}
\pm 1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)= \pm 1
$$

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal

 group:$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Lemma. Let $\mathrm{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be any orthogonal transformation. Then there is an orthonormal basis for \mathbb{R}^{n} in which A is represented by a matrix of the form

$\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}$

Example. Let $G=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proof. Extend to a \mathbb{C}-linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proof. Extend to a \mathbb{C}-linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.
Preserves length, so belongs to $\mathbf{U}(n)$.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proof. Extend to a \mathbb{C}-linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.
Preserves length, so belongs to $\mathbf{U}(n)$.
Diagonalize.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

For $\mathbf{A} \in \mathbf{O}(n)$,

$$
\left[\begin{array}{ccccc}
\cos \theta_{1} & -\sin \theta_{1} & & & \\
\sin \theta_{1} & \cos \theta_{1} & & & \\
& & \cos \theta_{2} & -\sin \theta_{2} & \\
\\
& & \sin \theta_{2} & \cos \theta_{2} & \\
\\
& & & & \ddots \\
& & & & \\
& & & (\pm 1)
\end{array}\right]
$$

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

For $\mathrm{A} \in \mathbf{S O}(n)$,

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

For $\mathrm{A} \in \mathbf{S O}(n)$, connect to I by

$$
\mathbf{A}(t)=\left[\begin{array}{ccccc}
\cos t \theta_{1} & -\sin t \theta_{1} & & & \\
\sin t \theta_{1} & \cos t \theta_{1} & & & \\
& & \cos t \theta_{2} & -\sin t \theta_{2} & \\
\\
& & \sin t \theta_{2} & \cos t \theta_{2} & \\
\\
& & & & \cdots \\
& & & & \\
& & & (+1)
\end{array}\right]
$$

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.
However, not simply connected!

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.

However, not simply connected!
Fo example, $\mathbf{S O}(3) \approx \mathbb{R P}^{3}$.

Example. Let $\mathrm{G}=\mathbf{S O}(n)$ be special orthogonal group:

$$
\mathbf{S O}(n)=\{\mathbf{A} \in \mathbf{O}(n) \quad \mid \quad \operatorname{det} \mathbf{A}=1\}
$$

Proposition. $\mathbf{S O}(n)$ is connected.

However, not simply connected!
Fo example, $\mathbf{S O}(3) \approx \mathbb{R} \mathbb{P}^{3}$.
More generally, we'll prove

$$
\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}
$$

Proposition. As smooth manifolds,

$$
\begin{aligned}
\mathbf{G L}(n, \mathbb{R}) & \approx \mathbf{O}(n) \times \mathbb{R}^{n(n+1) / 2} \\
\mathbf{S L}(n, \mathbb{R}) & \approx \mathbf{S O}(n) \times \mathbb{R}^{\left(n^{2}+n-2\right) / 2} \\
\mathbf{G L}(n, \mathbb{C}) & \approx \mathbf{U}(n) \times \mathbb{R}^{n^{2}} \\
\mathbf{S L}(n, \mathbb{C}) & \approx \mathbf{S U}(n) \times \mathbb{R}^{n^{2}-1}
\end{aligned}
$$

