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e The group multiplication operation

GxG—G
(a, b) — ab

1S a smooth map,; and
e the group inversion operation

G — G

aléa_1

1S also a smooth map.

I'll typically denote identity element by e € G.
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We previously also saw not simply connected.
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[f A € O(n), then
(det A)? = (det AY)(det A) = det(A'A) = det T =1
SO

det A € {£1}.
Both possibilities occur, because
(=)

det . = +1.

.1y
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Example. Let G = SO(n) be special orthogonal

group:

SO(n) ={Ac€O0O(n) | detA=1}

Lemma. Let A : R" — R" be any orthogonal
transformation. Then there 1s an orthonormal
basis for R™ in which A is represented by a ma-

triz of the form
[ cosfp — sin By
sinf; cos 6
cos @9 —sin b9
sinfy  cos 69

(@

SO(n) ={A€O(n) | detA=1}
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Example. Let G = SO(n) be special orthogonal
group:

SO(n) ={Ac€O0O(n) | detA=1}
Proof. Extend to a C-linear map C" — C™.

Preserves length, so belongs to U(n).

Diagonalize.



Example. Let G = SO(n) be special orthogonal
group:

SO(n) ={Ac€O0O(n) | detA=1}

For A € O(n),

[ cos @ —sin By
sinfl; cos6q
cos o —sin b9
sinfy  cos by

(1)




Example. Let G = SO(n) be special orthogonal
group:

SO(n) ={Ac€O0O(n) | detA=1}

For A € SO(n),

[ cos @ —sin By
sinfl; cos6q
cos o —sin b9
sinfy  cos by




Example. Let G = SO(n) be special orthogonal
group:

SO(n) ={Ac€O0O(n) | detA=1}

For A € SO(n), connect to I by

" costhy —sintl
sintf; costb
costfy — sinth-
sintfo  costbo
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Example. Let G = SO(n) be special orthogonal
group:

SO(n) ={Ac€O0O(n) | detA=1}

Proposition. SO(n) is connected.

However, not simply connected!
Fo example, SO(3)~RP°.

More generally, we’ll prove

11(SO(n)) = Zs.



Proposition. As smooth manzifolds,
GL( R) ~ ()( ) x Rn+1)/2
SL(n, R) ~ SO(n) x R< n’+n—2)/2
GL(n,C) ~ ( ) X R"
SL(n,C) ~ SU(n) x R" !



