MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

February 9, 2021

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

• The group multiplication operation

$$G \times G \longrightarrow G$$
 $(a, b) \mapsto ab$

is a smooth map; and

• The group multiplication operation

$$G \times G \longrightarrow G$$
 $(a, b) \mapsto ab$

is a smooth map; and

• the group inversion operation

$$G \longrightarrow G$$
 $a \mapsto a^{-1}$

is also a smooth map.

• The group multiplication operation

$$G \times G \longrightarrow G$$
 $(a, b) \mapsto ab$

is a smooth map; and

• the group inversion operation

$$G \longrightarrow G$$
 $a \mapsto a^{-1}$

is also a smooth map.

I'll typically denote identity element by $e \in G$.

$$\mathbf{GL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right.$$

$$\mathbf{GL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right.$$

We noted that this example is non-compact.

$$\mathbf{GL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right.$$

We noted that this example is non-compact.

We also observed that it's not connected.

$$\mathbf{GL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right.$$

We noted that this example is non-compact.

We also observed that it's not connected.

Today we'll prove: has exactly two components.

$$\mathbf{SL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right. \det \mathbf{A} = 1 \right\}$$

$$\mathbf{SL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right\}$$

Manifold of dimension $n^2 - 1$,

$$\mathbf{SL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right\}$$

Manifold of dimension $n^2 - 1$,

because smooth hypersurface in \mathbb{R}^{n^2} .

$$\mathbf{SL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right\}$$

Manifold of dimension $n^2 - 1$,

because smooth hypersurface in \mathbb{R}^{n^2} .

This example is also non-compact.

$$\mathbf{SL}(n,\mathbb{R}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right\}$$

Manifold of dimension $n^2 - 1$,

because smooth hypersurface in \mathbb{R}^{n^2} .

This example is also non-compact.

Today we'll prove that it's connected.

$$\mathbf{GL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right. det \mathbf{A} \neq 0 \right\}$$

$$\mathbf{GL}(n,\mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Manifold because open set in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

$$\mathbf{GL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Manifold because open set in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

Complement of zeroes of polynomial $\mathbb{C}^{n^2} \to \mathbb{C}$.

$$\mathbf{GL}(n,\mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Manifold because open set in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

Complement of zeroes of polynomial $\mathbb{C}^{n^2} \to \mathbb{C}$.

So connected and not compact.

$$\mathbf{GL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right. det \mathbf{A} \neq 0 \right\}$$

Manifold because open set in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

Complement of zeroes of polynomial $\mathbb{C}^{n^2} \to \mathbb{C}$.

So connected and not compact.

We'll see other proofs today.

$$\mathbf{GL}(n,\mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \vdots & \det \mathbf{A} \neq 0 \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Manifold because open set in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

Complement of zeroes of polynomial $\mathbb{C}^{n^2} \to \mathbb{C}$.

So connected and not compact.

We'll see other proofs today.

We previously also saw **not** simply connected.

$$\mathbf{SL}(n,\mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right. \det \mathbf{A} = 1 \right\}$$

$$\mathbf{SL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \right\}$$

Lie group of dimension $2n^2 - 2$.

$$\mathbf{SL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Lie group of dimension $2n^2 - 2$.

Complex Lie group of complex dimension $n^2 - 1$.

$$\mathbf{SL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Lie group of dimension $2n^2 - 2$.

Complex Lie group of complex dimension $n^2 - 1$.

We will show that it is connected,

$$\mathbf{SL}(n, \mathbb{C}) = \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \right\}$$

Lie group of dimension $2n^2 - 2$.

Complex Lie group of complex dimension $n^2 - 1$.

We will show that it is connected, and also simply connected.

 $\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C} \text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$

 $\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C} \text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$ = $\{ \langle , \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C} \text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{ \text{orthonormal bases for } \mathbb{C}^n \}
```

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \text{orthonormal bases for } \mathbb{C}^n \} 
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
```

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \text{orthonormal bases for } \mathbb{C}^n \} 
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
```

```
\begin{bmatrix} \bar{\mathsf{a}}_{11} & \cdots & \bar{\mathsf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathsf{a}}_{1n} & \cdots & \bar{\mathsf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}
```

```
\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{\text{orthonormal bases for } \mathbb{C}^n \}
= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}
```

$$\begin{bmatrix} \bar{\mathsf{a}}_{11} & \cdots & \bar{\mathsf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathsf{a}}_{1n} & \cdots & \bar{\mathsf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

A***A** automatically Hermitian.

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

$$\begin{bmatrix} \bar{\mathsf{a}}_{11} & \cdots & \bar{\mathsf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathsf{a}}_{1n} & \cdots & \bar{\mathsf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

A***A** automatically Hermitian.

So cut out by n^2 real equations in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

$$\begin{bmatrix} \bar{\mathbf{a}}_{11} & \cdots & \bar{\mathbf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathbf{a}}_{1n} & \cdots & \bar{\mathbf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

A***A** automatically Hermitian.

So cut out by n^2 real equations in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

Transverse to zero, so manifold of dimension n^2 .

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

$$\begin{bmatrix} \bar{\mathsf{a}}_{11} & \cdots & \bar{\mathsf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathsf{a}}_{1n} & \cdots & \bar{\mathsf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

A***A** automatically Hermitian.

So cut out by n^2 real equations in $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$.

So this Lie group has dimension n^2 .

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \text{orthonormal bases for } \mathbb{C}^n \} 
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
```

$$\begin{bmatrix} \bar{\mathbf{a}}_{11} & \cdots & \bar{\mathbf{a}}_{n1} \\ \vdots & & \vdots \\ \bar{\mathbf{a}}_{1n} & \cdots & \bar{\mathbf{a}}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

Notice that $\mathbf{U}(n)$ is compact!

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \text{orthonormal bases for } \mathbb{C}^n \} 
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
```

```
 \begin{aligned} \mathbf{U}(n) &= \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \langle \; , \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{C}^n \} \\ &= \{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{C}) \; \mid \; \mathbf{A}^*\mathbf{A} = \mathbf{I} \} \end{aligned}
```

If $\mathbf{A} \in \mathbf{U}(n)$, then

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C} \text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{ \text{orthonormal bases for } \mathbb{C}^n \}
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
If \mathbf{A} \in \mathbf{U}(n), then
|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det(\mathbf{A}^* \mathbf{A}) = \det \mathbf{I} = 1.
```

```
 \begin{aligned} \mathbf{U}(n) &= \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \langle \;, \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{C}^n \} \\ &= \{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \} \end{aligned}  If \mathbf{A} \in \mathbf{U}(n), then  |\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det (\mathbf{A}^*\mathbf{A}) = \det \mathbf{I} = 1.  So  \det \mathbf{A} \in S^1 \subset \mathbb{C}.
```

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C} \text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$$|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det (\mathbf{A}^* \mathbf{A}) = \det \mathbf{I} = 1.$$

$$\det \mathbf{A} \in S^1 \subset \mathbb{C}$$
.

Consider loop

So

$$\begin{pmatrix} e^{i\theta} & & & \\ & 1 & & \\ & & \ddots & \\ & & 1 \end{pmatrix} \in \mathbf{U}(n).$$

$$\begin{aligned} \mathbf{U}(n) &= \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \langle \; , \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{C}^n \} \\ &= \{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{C}) \; \mid \; \mathbf{A}^*\mathbf{A} = \mathbf{I} \} \end{aligned}$$

If
$$\mathbf{A} \in \mathbf{U}(n)$$
, then

$$|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det(\mathbf{A}^*\mathbf{A}) = \det \mathbf{I} = 1.$$

So

$$\det \mathbf{A} \in S^1 \subset \mathbb{C}$$
.

Consider loop

$$\det \begin{pmatrix} e^{i\theta} & & \\ & 1 & \\ & & \ddots & \\ & & 1 \end{pmatrix} = e^{i\theta}.$$

$$\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}$$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$$|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det(\mathbf{A}^*\mathbf{A}) = \det \mathbf{I} = 1.$$
So
$$\det \mathbf{A} \in S^1 \subset \mathbb{C}.$$
So $\det : \mathbf{U}(n) \to S^1$ induces surjection
$$\det_* : \pi_1(\mathbf{U}(n), \mathbf{I}) \to \pi_1(S^1, 1) \cong \mathbb{Z}$$

$$\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}$$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$$|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det(\mathbf{A}^*\mathbf{A}) = \det \mathbf{I} = 1.$$
So
$$\det \mathbf{A} \in S^1 \subset \mathbb{C}.$$
So $\det : \mathbf{U}(n) \to S^1$ induces surjection

Thus $\mathbf{U}(n)$ is not simply connected!

 $\det_*: \pi_1(\mathbf{U}(n), \mathbf{I}) \to \pi_1(S^1, 1) \cong \mathbb{Z}$

However...

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$
If $\mathbf{A} \in \mathbf{U}(n)$, then
$$|\det \mathbf{A}|^2 = (\det \mathbf{A}^*)(\det \mathbf{A}) = \det (\mathbf{A}^* \mathbf{A}) = \det \mathbf{I} = 1.$$
So
$$\det \mathbf{A} \in S^1 \subset \mathbb{C}.$$
So $\det : \mathbf{U}(n) \to S^1 \text{ induces surjection}$

$$\det_* : \pi_1(\mathbf{U}(n), \mathbf{I}) \to \pi_1(S^1, 1) \cong \mathbb{Z}$$
Thus $\mathbf{U}(n)$ is not simply connected!

```
\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}
= \{\text{orthonormal bases for } \mathbb{C}^n \}
= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}
```

Proposition. U(n) is connected.

```
\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \} 
= \{ \text{orthonormal bases for } \mathbb{C}^n \} 
= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}
```

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary,

$$\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}$$

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary,

its eigenspaces are mutually orthogonal & span \mathbb{C}^n .

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary, so

 \exists orthonormal basis for \mathbb{C}^n in which **A** has matrix

$$\mathbf{U}(n) = \{\text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\langle \ , \ \rangle\text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{\text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{\mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^*\mathbf{A} = \mathbf{I} \}$$

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary, so

 \exists orthonormal basis for \mathbb{C}^n in which \mathbf{A} has matrix

$$\left(egin{array}{c} e^{i heta_1} & & & & \\ & e^{i heta_2} & & & \\ & & \ddots & & \\ & & & e^{i heta_n} \end{array}
ight)$$

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary,

hence can join I to A by the path

$$\left(egin{array}{c} e^{i heta_1} & & & & \\ & e^{i heta_2} & & & \\ & & \ddots & & \\ & & & e^{i heta_n} \end{array}
ight)$$

$$\mathbf{U}(n) = \{ \text{length-preserving } \mathbb{C}\text{-vector-space isom'isms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{C}^n \to \mathbb{C}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{C}^n \}$$

$$= \{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{C}) \mid \mathbf{A}^* \mathbf{A} = \mathbf{I} \}$$

Proposition. U(n) is connected.

Proof. Given $\mathbf{A}: \mathbb{C}^n \to \mathbb{C}^n$ unitary,

hence can join I to A by the path

$$A(t) = \begin{pmatrix} e^{it\theta_1} & & & \\ & e^{it\theta_2} & & \\ & & \ddots & \\ & & & e^{it\theta_n} \end{pmatrix}, \quad t \in [0, 1].$$

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Proposition. SU(n) is connected.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Proposition. SU(n) is connected.

Proof. \exists basis for \mathbb{C}^n in which \mathbf{A} has matrix

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Proposition. SU(n) is connected.

Proof. \exists basis for \mathbb{C}^n in which \mathbf{A} has matrix

$$\begin{pmatrix} e^{i\theta_1} & & \\ & e^{i\theta_2} & & \\ & & \ddots & \\ & & & e^{i\theta_n} \end{pmatrix}$$
 with $\theta_1 + \theta_2 + \dots + \theta_n = 0$.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Proposition. SU(n) is connected.

Proof. So can again join I to A by the path

$$A(t) = \begin{pmatrix} e^{it\theta_1} & & \\ & e^{it\theta_2} & \\ & & \ddots & \\ & & & e^{it\theta_n} \end{pmatrix}, \qquad t \in [0, 1],$$

where
$$t\theta_1 + t\theta_2 + \cdots + t\theta_n = 0$$
.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Example. SU(2) $\approx S^3$.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Example. SU(2) $\approx S^3$.

$$\mathbf{SU}(2) = \left\{ \begin{pmatrix} z_1 & -\overline{z}_2 \\ z_2 & \overline{z}_1 \end{pmatrix} \middle| |z_1|^2 + |z_2|^2 = 1 \right\}$$

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Example. SU(2) $\approx S^3$.

$$\mathbf{SU}(n) = \{ \mathbf{A} \in \mathbf{U}(n) \mid \det \mathbf{A} = 1 \}$$

Compact Lie group of dimension $n^2 - 1$.

Example. SU(2) $\approx S^3$.

We'll later show: SU(n) is simply connected $\forall n$.

Example. Let G = O(n) be orthogonal group:

Example. Let G = O(n) be orthogonal group:

 $\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$

Example. Let G = O(n) be orthogonal group:

 $\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$ = $\{ \langle , \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}$

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}
= \{ \text{orthonormal bases for } \mathbb{R}^n \}
```

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \text{orthonormal bases for } \mathbb{R}^n \} 
= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
```

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}
                     = \{\langle , \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}
                     = {orthonormal bases for \mathbb{R}^n}
                     = \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
\begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{n1} \\ \vdots & & \vdots \\ \mathsf{a}_{1n} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}
```

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}
                      = \{\langle , \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}
                      = {orthonormal bases for \mathbb{R}^n}
                     = \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
\begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{n1} \\ \vdots & & \vdots \\ \mathsf{a}_{1n} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} \mathsf{1} & & & \\ \mathsf{1} & & & \\ & \mathsf{1} & & \\ & & \mathsf{1} & \\ & & & \mathsf{1} \end{bmatrix}
```

 $\mathbf{A}^t \mathbf{A}$ automatically symmetric.

$$\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{R}^n \}$$

$$= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \ | \ \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}$$

$$\begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{n1} \\ \vdots & & \vdots \\ \mathsf{a}_{1n} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

 $\mathbf{A}^t \mathbf{A}$ automatically symmetric.

So cut out by $\frac{n(n+1)}{2}$ equations in \mathbb{R}^{n^2} .

$$\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{R}^n \}$$

$$= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \ | \ \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}$$

$$\begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{n1} \\ \vdots & & \vdots \\ \mathsf{a}_{1n} & \cdots & \mathsf{a}_{nn} \end{bmatrix} \begin{bmatrix} \mathsf{a}_{11} & \cdots & \mathsf{a}_{1n} \\ \vdots & & \vdots \\ \mathsf{a}_{n1} & \cdots & \mathsf{a}_{nn} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

 $\mathbf{A}^t \mathbf{A}$ automatically symmetric.

So cut out by $\frac{n(n+1)}{2}$ equations in \mathbb{R}^{n^2} .

Transverse to zero, so manifold of dimension $\frac{n(n-1)}{2}$.

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \text{orthonormal bases for } \mathbb{R}^n \} 
= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
```

 $\mathbf{O}(n)$ is a Lie group of dimension $\frac{n(n-1)}{2}$.

$$\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{R}^n \}$$

$$= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}$$

 $\mathbf{O}(n)$ is a Lie group of dimension $\frac{n(n-1)}{2}$.

Notice that $\mathbf{O}(n)$ is compact!

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \text{orthonormal bases for } \mathbb{R}^n \} 
= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
```

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \text{orthonormal bases for } \mathbb{R}^n \} 
= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
```

```
\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} 
= \{ \text{orthonormal bases for } \mathbb{R}^n \} 
= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}
```

If $\mathbf{A} \in \mathbf{O}(n)$, then

$$\begin{aligned} \mathbf{O}(n) &= \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \langle \; , \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{R}^n \} \\ &= \left\{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{R}) \; \mid \; \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\} \end{aligned}$$

If
$$\mathbf{A} \in \mathbf{O}(n)$$
, then $(\det \mathbf{A})^2 = (\det \mathbf{A}^t)(\det \mathbf{A}) = \det(\mathbf{A}^t \mathbf{A}) = \det \mathbf{I} = 1$

$$\begin{aligned} \mathbf{O}(n) &= \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \langle \; , \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{R}^n \} \\ &= \left\{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{R}) \; \mid \; \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\} \end{aligned}$$

If
$$\mathbf{A} \in \mathbf{O}(n)$$
, then
$$(\det \mathbf{A})^2 = (\det \mathbf{A}^t)(\det \mathbf{A}) = \det(\mathbf{A}^t\mathbf{A}) = \det \mathbf{I} = 1$$
 so
$$\det \mathbf{A} \in \{\pm 1\}.$$

$$\begin{aligned} \mathbf{O}(n) &= \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \langle \; , \; \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \} \\ &= \{ \text{orthonormal bases for } \mathbb{R}^n \} \\ &= \left\{ \mathbf{A} \in \mathbf{GL}(n,\mathbb{R}) \; \mid \; \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\} \end{aligned}$$

If
$$\mathbf{A} \in \mathbf{O}(n)$$
, then $(\det \mathbf{A})^2 = (\det \mathbf{A}^t)(\det \mathbf{A}) = \det(\mathbf{A}^t \mathbf{A}) = \det \mathbf{I} = 1$ so $\det \mathbf{A} \in \{\pm 1\}.$

Both possibilities occur, because

$$\begin{pmatrix} \pm 1 & & \\ & 1 & \\ & & \ddots & \\ & & 1 \end{pmatrix}$$

$$\mathbf{O}(n) = \{ \text{length-preserving vector-space isom'isms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \langle \ , \ \rangle \text{-preserving vector-space isomorphisms } \mathbb{R}^n \to \mathbb{R}^n \}$$

$$= \{ \text{orthonormal bases for } \mathbb{R}^n \}$$

$$= \left\{ \mathbf{A} \in \mathbf{GL}(n, \mathbb{R}) \mid \mathbf{A}^t \mathbf{A} = \mathbf{I} \right\}$$

If
$$\mathbf{A} \in \mathbf{O}(n)$$
, then $(\det \mathbf{A})^2 = (\det \mathbf{A}^t)(\det \mathbf{A}) = \det(\mathbf{A}^t\mathbf{A}) = \det \mathbf{I} = 1$ so $\det \mathbf{A} \in \{\pm 1\}.$

Both possibilities occur, because

$$\det\begin{pmatrix} \pm 1 & & \\ & 1 & \\ & & \ddots & \\ & & 1 \end{pmatrix} = \pm 1.$$

$$SO(n) = \{ \mathbf{A} \in \mathbf{O}(n) \mid \det \mathbf{A} = 1 \}$$

Proposition. SO(n) is connected.

$$SO(n) = \{A \in O(n) \mid \det A = 1\}$$

Lemma. Let $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^n$ be any orthogonal transformation. Then there is an orthonormal basis for \mathbb{R}^n in which \mathbf{A} is represented by a matrix of the form

$$\begin{bmatrix}
\cos \theta_1 & -\sin \theta_1 \\
\sin \theta_1 & \cos \theta_1
\end{bmatrix}$$

$$\cos \theta_2 & -\sin \theta_2 \\
\sin \theta_2 & \cos \theta_2$$

$$\vdots$$

$$(\pm 1)$$

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

$$SO(n) = \{ \mathbf{A} \in \mathbf{O}(n) \mid \det \mathbf{A} = 1 \}$$

Proof. Extend to a \mathbb{C} -linear map $\mathbb{C}^n \to \mathbb{C}^n$.

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

Proof. Extend to a \mathbb{C} -linear map $\mathbb{C}^n \to \mathbb{C}^n$.

Preserves length, so belongs to $\mathbf{U}(n)$.

$$SO(n) = \{A \in O(n) \mid \det A = 1\}$$

Proof. Extend to a \mathbb{C} -linear map $\mathbb{C}^n \to \mathbb{C}^n$.

Preserves length, so belongs to $\mathbf{U}(n)$.

Diagonalize.

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

For $\mathbf{A} \in \mathbf{O}(n)$,

$$\begin{bmatrix} \cos \theta_1 - \sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix}$$

$$\cos \theta_2 - \sin \theta_2$$

$$\sin \theta_2 & \cos \theta_2$$

$$(\pm 1)$$

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

For $\mathbf{A} \in \mathbf{SO}(n)$,

$$\begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix}$$

$$\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

$$\cdots$$

$$(+1)$$

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

For $\mathbf{A} \in \mathbf{SO}(n)$, connect to \mathbf{I} by

$$\mathbf{A}(t) = \begin{bmatrix} \cos t\theta_1 & -\sin t\theta_1 \\ \sin t\theta_1 & \cos t\theta_1 \end{bmatrix}$$

$$\cos t\theta_2 - \sin t\theta_2 \\ \sin t\theta_2 & \cos t\theta_2 \end{bmatrix}$$

$$(+1)$$

$$SO(n) = \{ \mathbf{A} \in \mathbf{O}(n) \mid \det \mathbf{A} = 1 \}$$

Proposition. SO(n) is connected.

$$SO(n) = \{ \mathbf{A} \in \mathbf{O}(n) \mid \det \mathbf{A} = 1 \}$$

Proposition. SO(n) is connected.

$$SO(n) = \{ A \in O(n) \mid \det A = 1 \}$$

Proposition. SO(n) is connected.

However, not simply connected!

$$SO(n) = \{A \in O(n) \mid \det A = 1\}$$

Proposition. SO(n) is connected.

However, not simply connected!

Fo example, $SO(3) \approx \mathbb{RP}^3$.

$$SO(n) = \{ \mathbf{A} \in \mathbf{O}(n) \mid \det \mathbf{A} = 1 \}$$

Proposition. SO(n) is connected.

However, not simply connected!

Fo example, $SO(3) \approx \mathbb{RP}^3$.

More generally, we'll prove

$$\pi_1(\mathbf{SO}(n)) \cong \mathbb{Z}_2.$$

Proposition. As smooth manifolds,

$$\mathbf{GL}(n, \mathbb{R}) \approx \mathbf{O}(n) \times \mathbb{R}^{n(n+1)/2}$$
 $\mathbf{SL}(n, \mathbb{R}) \approx \mathbf{SO}(n) \times \mathbb{R}^{(n^2+n-2)/2}$
 $\mathbf{GL}(n, \mathbb{C}) \approx \mathbf{U}(n) \times \mathbb{R}^{n^2}$
 $\mathbf{SL}(n, \mathbb{C}) \approx \mathbf{SU}(n) \times \mathbb{R}^{n^2-1}$