## MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 25, 2021
$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{- 1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$$
\mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$$
\mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}
$$

$$
\mathbf{k i}=-\mathbf{i k}=\mathbf{j}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

So any $q \neq 0$ has multiplicative inverse

$$
q^{-1}=\frac{1}{\|q\|^{2}} \bar{q}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

So any $q \neq 0$ has multiplicative inverse

$$
q^{-1}=\frac{1}{\|q\|^{2}} \bar{q}
$$

Also notice that conjugation satisfies

$$
\overline{q_{1} q_{2}}=\overline{q_{2}} \overline{q_{1}}
$$

# "Classical" Compact Lie Groups and their Lie Algebras 

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$

$$
\mathfrak{u}(1)=\mathbb{R}
$$

## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\quad \mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$
$\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$ $\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \quad \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$
- $\mathbf{S p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\mathbf{A} \mid \quad \overline{\mathbf{A}^{t}} \mathbf{A}=\mathbf{I}\right\}$


## "Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$ $\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \quad \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$
- $\mathbf{S p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\mathbf{A} \mid \quad \overline{\mathbf{A}^{t}} \mathbf{A}=\mathbf{I}\right\}$
$\mathfrak{s p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\quad \mathrm{A} \mid \quad \overline{\mathbf{A}^{t}}=-\mathrm{A}\right\}$


## Fundamental Groups of "Classical" Compact Lie Groups

- $\mathbf{S O}(2)=\mathbf{U}(1)=S^{1}$
$\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\mathbf{S O}(3) \approx \mathbb{R P}^{3}$
$\pi_{1}(\mathbf{S O}(3)) \cong \mathbb{Z}_{2}$
$\mathbf{S O}(3) \hookrightarrow \mathbf{S O}(n), n \geq 3$
We'll show this induces:
$\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$

Fiber bundle:

$$
\begin{gathered}
\mathbf{S O}(n+1) \\
\downarrow \\
S^{n}
\end{gathered}
$$

Fiber bundle:

$$
\mathbf{S O}(n) \hookrightarrow \underset{\substack{ \\\downarrow \\ S^{n}}}{\mathbf{S O}(n+1)}
$$

Example of a "Serre fibration":

$$
\begin{gathered}
\mathbf{S O}(n) \hookrightarrow \\
\downarrow \\
S^{n}
\end{gathered}
$$

Example of a "Serre fibration":

$$
\begin{aligned}
F \hookrightarrow & E \\
& \downarrow \\
& B
\end{aligned}
$$

Example of a "Serre fibration":

$$
\begin{aligned}
& F \hookrightarrow E \\
& \downarrow \\
& B
\end{aligned}
$$

Homotopy exact sequence of a fibration
$\cdots \rightarrow \pi_{2}(B) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}(B) \rightarrow \pi_{0}(F) \rightarrow \cdots$
$\pi_{2}(X)=$ homotopy classes of maps $S^{2} \rightarrow X$
$\pi_{0}(X)=$ set of connected components of $X$
Need base point to define relevant structures!

Example of a "Serre fibration":

$$
\begin{aligned}
& F \hookrightarrow E \\
& \downarrow \\
& B
\end{aligned}
$$

Homotopy exact sequence of a fibration
$\cdots \rightarrow \pi_{k+1}(B) \rightarrow \pi_{k}(F) \rightarrow \pi_{k}(E) \rightarrow \pi_{k}(B) \rightarrow \pi_{k-1}(F) \rightarrow \cdots$
$\pi_{k}(X)=$ homotopy classes of maps $S^{k} \rightarrow X$

Example of a "Serre fibration":

$$
\mathbf{S O}(n) \hookrightarrow \underset{\substack{ \\\downarrow \\ S^{n}}}{\mathbf{S O}(n+1)}
$$

Homotopy exact sequence of a fibration
$\cdots \rightarrow \pi_{2}\left(S^{n}\right) \rightarrow \pi_{1}(\mathbf{S O}(n)) \rightarrow \pi_{1}(\mathbf{S O}(n+1)) \rightarrow \pi_{1}\left(S^{n}\right) \rightarrow 0$

Example of a "Serre fibration":

$$
\mathbf{S O}(n) \hookrightarrow \underset{\substack{ \\\downarrow \\ S^{n}}}{\mathbf{S O}(n+1)}
$$

Homotopy exact sequence of a fibration
$\cdots \rightarrow \pi_{2}\left(S^{n}\right) \rightarrow \pi_{1}(\mathbf{S O}(n)) \rightarrow \pi_{1}(\mathbf{S O}(n+1)) \rightarrow \pi_{1}\left(S^{n}\right) \rightarrow 0$
For $n \geq 3$, get isomorphism

$$
\pi_{1}(\mathbf{S O}(n)) \rightarrow \pi_{1}(\mathbf{S O}(n+1))
$$

induced by inclusion.

Example of a "Serre fibration":

$$
\mathbf{S O}(n) \hookrightarrow \underset{\substack{ \\\downarrow \\ S^{n}}}{\mathbf{S O}(n+1)}
$$

Homotopy exact sequence of a fibration
$\cdots \rightarrow \pi_{2}\left(S^{n}\right) \rightarrow \pi_{1}(\mathbf{S O}(n)) \rightarrow \pi_{1}(\mathbf{S O}(n+1)) \rightarrow \pi_{1}\left(S^{n}\right) \rightarrow 0$
For $n \geq 3$, get isomorphism

$$
\pi_{1}(\mathbf{S O}(n)) \rightarrow \pi_{1}(\mathbf{S O}(n+1))
$$

induced by inclusion.
By induction,

$$
\pi_{1}(\mathbf{S O}(n)) \cong \pi_{1}(\mathbf{S O}(3)) \cong \mathbb{Z}_{2}, \forall n \geq 3
$$

Fundamental Groups of "Classical" Compact Lie Groups

- $\mathbf{S O}(2)=\mathbf{U}(1)=S^{1}$
$\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\mathbf{S U}(2) \approx S^{3}$
$\pi_{1}(\mathbf{S U}(2))=0$
$\mathbf{S U}(2) \hookrightarrow \mathbf{S U}(n), n \geq 2$


## Fundamental Groups of "Classical" Compact Lie Groups

- $\mathbf{S O}(2)=\mathbf{U}(1)=S^{1}$
$\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\mathbf{S U}(2) \approx S^{3}$
$\pi_{1}(\mathbf{S U}(2))=0$
$\mathbf{S U}(2) \hookrightarrow \mathbf{S U}(n), n \geq 2$
Similarly, this induces:
$\pi_{1}(\mathbf{S U}(n))=0, n \geq 2$

Fiber bundle:

$$
\begin{gathered}
\mathbf{S U}(n) \hookrightarrow \\
\downarrow \\
S^{2 n+1}
\end{gathered}
$$

Fiber bundle:

$$
\begin{gathered}
\mathbf{S U}(n) \hookrightarrow \underset{\mathbf{S U}(n+1)}{\downarrow} \\
S^{2 n+1}
\end{gathered}
$$

Homotopy exact sequence of a fibration

$$
\pi_{2}\left(S^{2 n+1}\right) \rightarrow \pi_{1}(\mathbf{S U}(n)) \rightarrow \pi_{1}(\mathbf{S U}(n+1)) \rightarrow \pi_{1}\left(S^{2 n+1}\right)
$$

# Fundamental Groups of "Classical" Compact Lie Groups 

- $\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\pi_{1}(\mathbf{S U}(n))=0, n \geq 2$


# Fundamental Groups of "Classical" Compact Lie Groups 

- $\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\pi_{1}(\mathbf{S U}(n))=0, n \geq 2$
- $\mathbf{S p}(1) \approx S^{3}$
$\pi_{1}(\mathbf{S p}(1))=0$


# Fundamental Groups of "Classical" Compact Lie Groups 

- $\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\pi_{1}(\mathbf{S U}(n))=0, n \geq 2$
- $\mathbf{S p}(1) \approx S^{3}$
$\pi_{1}(\mathbf{S p}(1))=0$
$\mathbf{S p}(1) \hookrightarrow \mathbf{S p}(n)$,
Similarly, this induces:
$\pi_{1}(\mathbf{S p}(n))=0$,

Fiber bundle:

$$
\begin{gathered}
\mathbf{S p}(n) \hookrightarrow \\
\\
\\
\\
S^{4 n+3}
\end{gathered}
$$

Fiber bundle:

$$
\begin{gathered}
\mathbf{S p}(n) \hookrightarrow \\
\\
\\
\\
\\
S^{4 n+3} \\
\downarrow
\end{gathered}
$$

Homotopy exact sequence of a fibration

$$
\pi_{2}\left(S^{4 n+3}\right) \rightarrow \pi_{1}(\mathbf{S U}(n)) \rightarrow \pi_{1}(\mathbf{S U}(n+1)) \rightarrow \pi_{1}\left(S^{4 n+3}\right)
$$

# Fundamental Groups of "Classical" Compact Lie Groups 

- $\pi_{1}(\mathbf{S O}(2))=\pi_{1}(\mathbf{U}(1))=\mathbb{Z}$
- $\pi_{1}(\mathbf{S O}(n)) \cong \mathbb{Z}_{2}, n \geq 3$
- $\pi_{1}(\mathbf{S U}(n))=0, n \geq 2$
- $\pi_{1}(\mathbf{S p}(n))=0, n \geq 1$

