MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 23, 2021
$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{- 1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$$
\mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Multiplication rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
$$

$$
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}
$$

$$
\mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}
$$

$$
\mathbf{k i}=-\mathbf{i k}=\mathbf{j}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

So any $q \neq 0$ has multiplicative inverse

$$
q^{-1}=\frac{1}{\|q\|^{2}} \bar{q}
$$

$\mathbb{H}=\mathbb{R}^{4}$, with basis

$$
e_{1}=\mathbf{1}, \quad e_{2}=\mathbf{i}, \quad e_{3}=\mathbf{j}, \quad e_{4}=\mathbf{k}
$$

Quaternionic conjugation

$$
\overline{t \mathbf{1}+u \mathbf{i}+v \mathbf{j},+w \mathbf{k}}=t \mathbf{1}-u \mathbf{i}-v \mathbf{j},-w \mathbf{k}
$$

Notice that

$$
\bar{q} q=q \bar{q}=\|q\|^{2}:=\|q\|^{2} \mathbf{1}
$$

So any $q \neq 0$ has multiplicative inverse

$$
q^{-1}=\frac{1}{\|q\|^{2}} \bar{q}
$$

Also notice that conjugation satisfies

$$
\overline{q_{1} q_{2}}=\overline{q_{2}} \overline{q_{1}}
$$

"Classical" Compact Lie Groups and their Lie Algebras

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$

$$
\mathfrak{u}(1)=\mathbb{R}
$$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\quad \mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$
$\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$
$\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$ $\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \quad \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$
- $\mathbf{S p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\mathbf{A} \mid \quad \overline{\mathbf{A}^{t}} \mathbf{A}=\mathbf{I}\right\}$

"Classical" Compact Lie Groups and their Lie Algebras

- $\mathbf{U}(1)=S^{1}$ $\mathfrak{u}(1)=\mathbb{R}$
- $\mathbf{S O}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{t} \mathbf{A}=\mathbf{I}, \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s o}(n)=\left\{n \times n \quad \mathbb{R}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{t}=-\mathrm{A}\right\}$
- $\mathbf{S U}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathbf{A} \mid \quad \mathbf{A}^{*} \mathbf{A}=\mathbf{I}, \quad \operatorname{det} \mathbf{A}=1\right\}$ $\mathfrak{s u}(n)=\left\{n \times n \quad \mathbb{C}\right.$-matrices $\left.\mathrm{A} \mid \quad \mathrm{A}^{*}=-\mathrm{A}, \operatorname{tr} \mathrm{A}=0\right\}$
- $\mathbf{S p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\mathbf{A} \mid \quad \overline{\mathbf{A}^{t}} \mathbf{A}=\mathbf{I}\right\}$
$\mathfrak{s p}(n)=\left\{n \times n \quad \mathbb{H}\right.$-matrices $\left.\quad \mathrm{A} \mid \quad \overline{\mathbf{A}^{t}}=-\mathrm{A}\right\}$

