MAT 552

Introduction to

Lie Groups and Lie Algebras

Claude LeBrun Stony Brook University

February 18, 2021

Recall that a smooth vector field V

 $V: C^{\infty}(M) \to C^{\infty}(M)$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

V(fg) = fVg + gVf.

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) ,

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

Infinite-dimensional vector space

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

Such a vector field may also be thought of as

That is, $V(p) \in T_p M$ for every $p \in M$.

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

 $\varpi: TM \to M.$

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

$$\varpi:TM \longrightarrow M$$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[,]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

[V,W] = -[W,V]

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$[V,W] = -[W,V]$$

2. Jacobi identity:

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

This map is linear in both arguments, and satisfies 1. *Skew symmetry:*

$$[V,W] = -[W,V]$$

2. Jacobi identity:

[U, [V, W]] + [V, [W, U]] + [W, [U, V]] = 0.

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies 1. *Skew symmetry:*

$$[V,W] = -[W,V]$$

2. Jacobi identity:

[U, [V, W]] + [V, [W, U]] + [W, [U, V]] = 0.

So $\mathfrak{X}(M)$ is an "infinite-dimensional Lie algebra."

If $V \in \mathfrak{X}(M)$, we say that

If
$$V \in \mathfrak{X}(M)$$
, we say that
 $\gamma : (-\varepsilon, \varepsilon) \to M$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$

is an *integral curve* of V if

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$
 for all $t \in (-\varepsilon, \varepsilon)$.

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if $\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$ for all $t \in (-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$,
Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma: (-\varepsilon, \varepsilon) \to M$$

with $\gamma(0) = p$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. We say this integral curve is complete if one can take $\varepsilon = \infty$:

$$\gamma: \mathbb{R} \to M.$$

 $\gamma:\mathbb{R}\to M$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

We can also define a smooth map

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\Phi(p,t) = \Phi_t(p).$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

$$\Phi(p,t) = \Phi_t(p).$$

This map is called the flow of V.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

• The group multiplication operation

 $\begin{array}{rrr} \mathsf{G}\times\mathsf{G} &\longrightarrow \;\mathsf{G} \\ (\mathsf{a},\;\mathsf{b}) &\mapsto \;\mathsf{ab} \end{array}$

is a smooth map; and

• The group multiplication operation

 $\begin{array}{ccc} \mathsf{G} \times \mathsf{G} & \longrightarrow & \mathsf{G} \\ (\mathsf{a}, \ \mathsf{b}) & \mapsto & \mathsf{ab} \end{array}$

is a smooth map; and

• the group inversion operation

 $\begin{array}{ccc} \mathsf{G} & \longrightarrow & \mathsf{G} \\ \mathsf{a} & \mapsto & \mathsf{a}^{-1} \end{array}$

is also a smooth map.

• The group multiplication operation

 $\begin{array}{rcl} \mathsf{G} \times \mathsf{G} & \longrightarrow & \mathsf{G} \\ (\mathsf{a}, \ \mathsf{b}) & \mapsto & \mathsf{ab} \end{array}$

is a smooth map; and

• the group inversion operation

 $\begin{array}{ccc} \mathsf{G} & \longrightarrow & \mathsf{G} \\ \mathsf{a} & \mapsto & \mathsf{a}^{-1} \end{array}$

is also a smooth map.

I'll typically denote identity element by $e \in G$.

 $TG \cong G \times T_eG.$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_a: \mathsf{G} \to \mathsf{G}$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_{a}: \mathsf{G} \to \mathsf{G}$

be left translation, defined by

 $L_{\mathsf{a}}(\mathsf{b}) = \mathsf{ab}.$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_a: \mathsf{G} \to \mathsf{G}$

be left translation, defined by

 $L_{\mathsf{a}}(\mathsf{b}) = \mathsf{ab}.$

Its derivative gives an isomorphism

 $L_{\mathsf{a}*}|_{\mathsf{e}}: T_{\mathsf{e}}\mathsf{G} \to T_{\mathsf{a}}\mathsf{G}.$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_{\mathsf{a}}:\mathsf{G}\to\mathsf{G}$

be left translation, defined by

 $L_{\mathsf{a}}(\mathsf{b}) = \mathsf{ab}.$

Its derivative gives an isomorphism

 $L_{\mathsf{a}*}|_{\mathsf{e}}: T_{\mathsf{e}}\mathsf{G} \to T_{\mathsf{a}}\mathsf{G}.$

But multiplication induces a smooth map

 $\mathsf{G}\times\mathsf{G}\to\mathsf{G}$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_{\mathsf{a}}:\mathsf{G}\to\mathsf{G}$

be left translation, defined by

 $L_{\mathsf{a}}(\mathsf{b}) = \mathsf{ab}.$

Its derivative gives an isomorphism

 $L_{a*}|_{e}: T_{e}G \rightarrow T_{a}G.$

But multiplication induces a smooth map $TG \times TG \rightarrow TG$

 $TG \cong G \times T_eG.$

Proof. Given any $a \in G$, let

 $L_{\mathsf{a}}:\mathsf{G}\to\mathsf{G}$

be left translation, defined by

 $L_{\mathsf{a}}(\mathsf{b}) = \mathsf{ab}.$

Its derivative gives an isomorphism

 $L_{a*}|_{e}: T_{e}G \rightarrow T_{a}G.$

But multiplication induces a smooth map

 $TG \times TG \rightarrow TG$

So as $\mathbf{a} \in \mathbf{G}$ varies, we get an isomorphism $\mathbf{G} \times T_{\mathbf{e}}\mathbf{G} \longrightarrow T\mathbf{G}.$

$TG \cong G \times T_eG$

gives rise to special vector fields:

 $TG \cong G \times T_eG$

gives rise to special vector fields:

Definition. A vector field X on G is called leftinvariant iff

 $L_{a*}X = X \quad \forall a \in G.$

 $TG \cong G \times T_eG$

gives rise to special vector fields:

Definition. A vector field X on G is called leftinvariant iff

 $L_{a*}X = X \quad \forall a \in G.$

Lemma. A vector field X is left-invariant iff $X|_{a} = L_{a*}(X|_{e}).$

$$TG \cong G \times T_eG$$

gives rise to special vector fields:

Definition. A vector field X on G is called leftinvariant iff

$$L_{a*}X = X \quad \forall a \in G.$$

Lemma. A vector field X is left-invariant iff $X|_{a} = L_{a*}(X|_{e}).$

Set

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}.$

$$TG \cong G \times T_eG$$

gives rise to special vector fields:

Definition. A vector field X on G is called leftinvariant iff

$$L_{a*}X = X \quad \forall a \in G.$$

Lemma. A vector field X is left-invariant iff $X|_{a} = L_{a*}(X|_{e}).$

Set

 $\mathfrak{g} = \{$ left-invariant vector fields on $G \}$. Thus, as a vector space

$$\mathfrak{g}=T_{\mathsf{e}}\mathsf{G}.$$

One-parameter subgroups.

One-parameter subgroups.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathbf{a} \in \mathsf{G}$, $L_{\mathbf{a}}(\gamma)$ is another integral curve.
Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathbf{a} \in \mathsf{G}$, $L_{\mathsf{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathbf{e} . Then, for any $\mathbf{a} \in \gamma$, $L_{\mathbf{a}^{-1}}(\gamma)$ is an integral curve though \mathbf{e} .

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathbf{a} \in \mathsf{G}$, $L_{\mathbf{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathfrak{e} . Then, for any $\mathfrak{a} \in \gamma$, $L_{\mathfrak{a}^{-1}}(\gamma)$ is an integral curve though \mathfrak{e} .

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathfrak{e} . Then, for any $\mathfrak{a} \in \gamma$, $L_{\mathfrak{a}^{-1}}(\gamma) = \gamma$.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathbf{a} \in \mathsf{G}$, $L_{\mathbf{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathfrak{e} . Then, for any $\mathfrak{a} \in \gamma$, $L_{\mathfrak{a}^{-1}}(\gamma)$ is an integral curve though \mathfrak{e} .

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathfrak{e} . Then, for any $\mathfrak{a} \in \gamma$, $L_{\mathfrak{a}^{-1}}(\gamma) = \gamma$.

Proposition. Let $X \in \mathfrak{g}$, and γ be the integral curve through \mathbf{e} . Then $\gamma \subset \mathbf{G}$ is a subgroup.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u) = \gamma(t+u).$

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u) = \gamma(u+t).$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u)=\gamma(u+t).$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u)=\gamma(u+t).$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then the flow of X is complete,

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u)=\gamma(u+t).$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then the flow of X is complete, and given by

$$\Phi_t = R_{\gamma(t)},$$

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then

 $\gamma(t)\gamma(u)=\gamma(u+t).$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through \mathfrak{e} . Then the flow of X is complete, and given by

$$\Phi_t = R_{\gamma(t)},$$

where R denotes right multiplication:

 $\Phi_t(\mathbf{a}) = \mathbf{a} \, \gamma(t).$

The Lie bracket of vector fields thus equips

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

The Lie bracket of vector fields thus equips $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$ with an operation

The Lie bracket of vector fields thus equips $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$ with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

The Lie bracket of vector fields thus equips $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$ with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

The Lie bracket of vector fields thus equips $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$ with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad \text{etc.}$

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad \text{etc.}$

2. Skew symmetry:

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad \text{etc.}$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad \text{etc.}$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

The Lie bracket of vector fields thus equips

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}$

with an operation

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. *Bilinearity:*

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad \text{etc.}$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R} -vector space

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R} -vector space that is equipped with an operation $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R} -vector space that is equipped with an operation $[\ ,\]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$

with the following properties

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Thus, we have now shown that every Lie group G has an associated Lie algebra \mathfrak{g} , with underlying vector space $T_{e}G$.

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

 $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

with the following properties

1. Bilinearity:

 $[X + Y, Z] = [X, Z] + [Y, Z], \quad [tX, Y] = t[X, Y], \quad etc.$

2. Skew symmetry:

$$[X,Y] = -[Y,X]$$

3. Jacobi identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Definition. The Lie algebra \mathfrak{g} of the Lie group G is by definition

 $\mathfrak{g} = \{ \text{left-invariant vector fields on } \mathsf{G} \}.$

Proposition. The Lie algebra of $G = GL(n, \mathbb{R})$ is naturally isomorphic to

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) = \{n \times n \text{ real matrices } \mathsf{A}\}$ equipped with the operation [,] defined by

 $[\mathsf{A},\mathsf{B}] = \mathsf{A}\mathsf{B} - \mathsf{B}\mathsf{A}.$

Proposition. The Lie algebra of $G = GL(n, \mathbb{R})$ is naturally isomorphic to

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) = \{n \times n \text{ real matrices } \mathsf{A}\}$ equipped with the operation [,] defined by $[\mathsf{A}, \mathsf{B}] = \mathsf{A}\mathsf{B} - \mathsf{B}\mathsf{A}.$

In this example, we can solve explicitly for $\gamma(t)$:
Proposition. The Lie algebra of $G = GL(n, \mathbb{R})$ is naturally isomorphic to

 $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) = \{n \times n \text{ real matrices } \mathsf{A}\}$ equipped with the operation [,] defined by $[\mathsf{A}, \mathsf{B}] = \mathsf{A}\mathsf{B} - \mathsf{B}\mathsf{A}.$

In this example, we can solve explicitly for $\gamma(t)$:

For any $A \in \mathfrak{gl}(n, \mathbb{R})$, corresponding one-parameter subgroup is

 $\gamma(t) = e^{t\mathsf{A}}.$