MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 18, 2021

Recall that a smooth vector field V

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$,

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

$\mathfrak{X}(M)=\{$ Smooth vector fields V on $M\}$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

Infinite-dimensional vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

Such a vector field may also be thought of as

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle
 $$
\varpi: T M \rightarrow M
$$

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

$$
\varpi: T M \rightarrow M
$$

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

$$
\varpi: T M \rightleftarrows M
$$

The vector space

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

$$
[U,[V, W]]+[V,[W, U]]+[W,[U, V]]=0 .
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

$$
[U,[V, W]]+[V,[W, U]]+[W,[U, V]]=0 .
$$

So $\mathfrak{X}(M)$ is an "infinite-dimensional Lie algebra."

$$
\text { If } V \in \mathfrak{X}(M) \text {, we say that }
$$

$$
\begin{aligned}
& \text { If } V \in \mathfrak{X}(M) \text {, we say that } \\
& \qquad \gamma:(-\varepsilon, \varepsilon) \rightarrow M
\end{aligned}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\begin{array}{r}
\gamma:(-\varepsilon, \varepsilon) \rightarrow M \\
\text { with } \gamma(0)=p, \text { for some } \varepsilon>0
\end{array}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. We say this integral curve is complete if one can take $\varepsilon=\infty$:

$$
\gamma: \mathbb{R} \rightarrow M
$$

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p)
$$

We say that $V \in \mathfrak{X}(M)$ is complete if every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a diffeomorphism

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p) .
$$

This map is called the flow of V.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.
I'll typically denote identity element by $\mathrm{e} \in \mathrm{G}$.

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle.

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
G \times G \rightarrow G
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
T \mathrm{G} \times T \mathrm{G} \rightarrow T \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
T \mathrm{G} \times T \mathrm{G} \rightarrow T \mathrm{G}
$$

So as a $\in G$ varies, we get an isomorphism

$$
\mathrm{G} \times T_{\mathrm{e}} \mathrm{G} \longrightarrow T \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Thus, as a vector space

$$
\mathfrak{g}=T_{\mathrm{e}} \mathrm{G} .
$$

One-parameter subgroups.

One-parameter subgroups.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathrm{a} \in \mathrm{G}, L_{\mathrm{a}}(\gamma)$ is another integral curve.

One-parameter subgroups.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathrm{a} \in \mathrm{G}, L_{\mathrm{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then, for any $\mathrm{a} \in \gamma, L_{\mathrm{a}-1}(\gamma)$ is an integral curve though e.

One-parameter subgroups.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathrm{a} \in \mathrm{G}, L_{\mathrm{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then, for any $\mathrm{a} \in \gamma, L_{\mathrm{a}-1}(\gamma)$ is an integral curve though e.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then, for any $\mathrm{a} \in \gamma, L_{\mathrm{a}-1}(\gamma)=\gamma$.

One-parameter subgroups.

Lemma. Let $X \in \mathfrak{g}$, and γ be image of an integral curve. Then, for any $\mathrm{a} \in \mathrm{G}, L_{\mathrm{a}}(\gamma)$ is another integral curve.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then, for any $\mathrm{a} \in \gamma, L_{\mathrm{a}}-1(\gamma)$ is an integral curve though e.

Lemma. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then, for any $\mathrm{a} \in \gamma, L_{\mathrm{a}-1}(\gamma)=\gamma$.

Proposition. Let $X \in \mathfrak{g}$, and γ be the integral curve through e. Then $\gamma \subset G$ is a subgroup.

One-parameter subgroups.

One-parameter subgroups.

One-parameter subgroups.
Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e.

One-parameter subgroups.
Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(t+u)
$$

One-parameter subgroups.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(u+t)
$$

In particular, this integral curve is complete.

One-parameter subgroups.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(u+t)
$$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e.

One-parameter subgroups.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(u+t)
$$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then the flow of X is complete,

One-parameter subgroups.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(u+t)
$$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then the flow of X is complete, and given by

$$
\Phi_{t}=R_{\gamma(t)}
$$

One-parameter subgroups.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then

$$
\gamma(t) \gamma(u)=\gamma(u+t)
$$

In particular, this integral curve is complete.

Proposition. Let $X \in \mathfrak{g}$, and $\gamma(t)$ be the integral curve through e. Then the flow of X is complete, and given by

$$
\Phi_{t}=R_{\gamma(t)}
$$

where R denotes right multiplication:

$$
\Phi_{t}(\mathrm{a})=\mathrm{a} \gamma(t)
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Thus, we have now shown that every Lie group G has an associated Lie algebra \mathfrak{g}, with underlying vector space $T_{\mathrm{e}} \mathrm{G}$.

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. The Lie algebra \mathfrak{g} of the Lie group
G is by definition

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Proposition. The Lie algebra of $\mathbf{G}=\mathbf{G L}(n, \mathbb{R})$

 is naturally isomorphic to$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

Proposition. The Lie algebra of $\mathbf{G}=\mathbf{G L}(n, \mathbb{R})$

 is naturally isomorphic to$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

In this example, we can solve explicitly for $\gamma(t)$:

Proposition. The Lie algebra of $\mathbf{G}=\mathbf{G L}(n, \mathbb{R})$

 is naturally isomorphic to$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

In this example, we can solve explicitly for $\gamma(t)$:
For any $\mathrm{A} \in \mathfrak{g l}(n, \mathbb{R})$, corresponding one-parameter subgroup is

$$
\gamma(t)=e^{t \mathrm{~A}}
$$

