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X(M) = {Smooth vector fields V on M}
carries Lie bracket operation

[ , ] : X(M)× X(M)→ X(M)

defined by

[V ,W ]f = VWf −WV f.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

[V ,W ] = −[W,V ]

2. Jacobi identity:

[U, [V ,W ]] + [V , [W,U ]] + [W, [U, V ]] = 0.

So X(M) is an “ infinite-dimensional Lie algebra.”
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We say that V ∈ X(M) is complete if every integral
curve can be extended to

γ : R→M

For each t ∈ R, can then define a diffeomorphism

Φt : M →M

by setting

Φt(p) = γp(t) where γp unique integral curve with γp(0) = p.

We can also define a smooth map

Φ : M × R→M

by setting
Φ(p, t) = Φt(p).

This map is called the flow of V .
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Definition. A Lie group G is a smooth manifold
that is also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

•The group multiplication operation

G× G −→ G

(a, b) 7→ ab

is a smooth map; and

• the group inversion operation

G −→ G

a 7→ a−1

is also a smooth map.

I’ll typically denote identity element by e ∈ G.
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Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.

But multiplication induces a smooth map

TG× TG→ TG

So as a ∈ G varies, we get an isomorphism

G× TeG −→ TG.
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:

Definition. A vector field X on G is called left-
invariant iff

La∗X = X ∀a ∈ G.

Lemma. A vector field X is left-invariant iff

X|a = La∗ (X|e) .
Set

g = {left-invariant vector fields on G}.
Thus, as a vector space

g = TeG.
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One-parameter subgroups.

Proposition. Let X ∈ g, and γ(t) be the inte-
gral curve through e. Then

γ(t)γ(u) = γ(u + t).

In particular, this integral curve is complete.

Proposition. Let X ∈ g, and γ(t) be the in-
tegral curve through e. Then the flow of X is
complete, and given by

Φt = Rγ(t),

where R denotes right multiplication:

Φt(a) = a γ(t).

84



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

85



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

86



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}

87



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

88



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

89



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

90



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

91



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

92



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

93



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

94



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

95



Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

96



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

97



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

98



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

99



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

100



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

101



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

102



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

Thus, we have now shown that every Lie group G
has an associated Lie algebra g, with underlying
vector space TeG.
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

Definition. The Lie algebra g of the Lie group
G is by definition

g = {left-invariant vector fields on G}.
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Proposition. The Lie algebra of G = GL(n,R)
is naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.
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Proposition. The Lie algebra of G = GL(n,R)
is naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.

In this example, we can solve explicitly for γ(t):
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Proposition. The Lie algebra of G = GL(n,R)
is naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.

In this example, we can solve explicitly for γ(t):

For any A ∈ gl(n,R), corresponding one-parameter
subgroup is

γ(t) = etA.
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