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Recall that a smooth vector field V' on a smooth
manifold M" is a linear map

Vo CR(M) — C%(M)
that satisfies the Leibniz rule

V(fg)=fVg+gVf.

[n any chart (system of local coordinates) (x*, ..., x"),
such a vector field takes the form

V = Z VI (x W

Infinite-dimensional vector space

X (M) = {Smooth vector fields V' on M}
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Such a vector field may also be thought of as
smooth section V' : M — T'M of tangent bundle

w: IT'M — M.

That is, V' (p) € TpM for every p € M.
Thus V' : M — T'M 1s a one-sided inverse of

w: I M — M
~_/
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X (M) = {Smooth vector fields 1V on M}

carries Lie bracket operation

[, ] X (M) x X(M) — X(M)
defined by

V,Wlf =VWf-WVF.

This map is linear in both arguments, and satisfies

1. Skew symmetry:
[V, W] =—=[W,V]
2. Jacobi identity:
U\, Wi+ [V, Ww,Ull+ W, U, V]| = 0.

So X(M) is an “ infinite-dimensional Lie algebra.”
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ItV e X(M), we say that
vi(—e,e) > M

is an wntegral curve of V' it

d
=8 =Vl

for all t € (—¢,¢).

Theorem. Given any V € X(M) and any p €
M, there exists a unique integral curve

v (—e,e) > M

with v(0) = p, for some ¢ > 0. We say this
integral curve is complete if one can take € = 0o:

v:R— M.
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We say that V' € X(M) is complete if every integral
curve can be extended to

v R— M

For each t € R, can then define a diffeomorphism
Oy M — M

by setting

$y(p) = vp(t) where v, unique integral curve with v,(0) = p.

We can also define a smooth map
O MxR—->M

by setting

O(p,t) = Pe(p).
This map is called the flow of 1.
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Definition. A Lie group G is a smooth manifold
that 1s also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

e The group multiplication operation

GxG—G
(a, b) — ab

1S a smooth map,; and
e the group inversion operation

G — G

aléa_1

1S also a smooth map.

I'll typically denote identity element by e € G.



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let
L,:G—G



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.
That 1is

TG= G x TG,

Proof. Given any a € G, let
L,:G—G

be left translation, defined by
L,(b) = ab.



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let
L,:G—G

be left translation, defined by
L,(b) = ab.

[ts derivative gives an isomorphism

Las|. : TeG — T.G.



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let
L,:G—G
be left translation, defined by
La(b) = ab.
[ts derivative gives an isomorphism
Lol 1 TeG — T5G.
But multiplication induces a smooth map

GXxG—=G



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let

L,:G—G
be left translation, defined by

La(b) = ab.
[ts derivative gives an isomorphism

Lol 1 TeG — T5G.
But multiplication induces a smooth map
TGxTG—TG



Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let

L,:G—G
be left translation, defined by

La(b) = ab.
[ts derivative gives an isomorphism

Lol 1 TeG — T5G.
But multiplication induces a smooth map
TGxTG—TG

So as a € G varies, we get an isomorphism

G X TG — TG,
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This trivialization
TG= G x 1.6
oives rise to special vector fields:

Definition. A vector field X on G s called left-
invariant iff

Loy X =X Va € G.

Lemma. A vector field X s left-invariant iff
Xl|a = Lax (X|e) -
Set
g = {left-invariant vector fields on G}.

Thus, as a vector space
g — TeG
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curve through e. Then v C G 1s a subgroup.
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Proposition. Let X € g, and (t) be the inte-
gral curve through e. Then

Y(t)y(u) = y(u+1).

In particular, this integral curve is complete.

Proposition. Let X € g, and 7(t) be the in-
tegral curve through e. Then the flow of X 1s
complete, and given by

bt = F ),
where R denotes right multiplication:
Dy(a) = ary(¢).
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Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 7] =X, Z]+|Y,Z], [tX,Y]=tX,Y] etc
2. Skew symmetry:
X, Y] = -[Y, X]
3. Jacobt tdentity:
XY, Z)+ Y, |2, X]|+ [Z,[X,Y]] = 0.
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Proposition. The Lie algebra of G = GL(n,R)
1s naturally isomorphic to

g =gl(n,R) = {n x n real matrices A}
equipped with the operation | , | defined by
A,B| = AB — BA.

[n this example, we can solve explicitly for ~(t):
For any A € gl(n,R), corresponding one-parameter

subgroup 1s
v(t) = e,



