MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 16, 2021

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.
I'll typically denote identity element by $\mathrm{e} \in \mathrm{G}$.

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle.

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
G \times G \rightarrow G
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
T \mathrm{G} \times T \mathrm{G} \rightarrow T \mathrm{G}
$$

Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any a $\in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G} .
$$

But multiplication induces a smooth map

$$
T \mathrm{G} \times T \mathrm{G} \rightarrow T \mathrm{G}
$$

So as a $\in G$ varies, we get an isomorphism

$$
\mathrm{G} \times T_{\mathrm{e}} \mathrm{G} \longrightarrow T \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Thus, as a vector space

$$
\mathfrak{g}=T_{\mathrm{e}} \mathrm{G} .
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Thus, we have now shown that every Lie group G has an associated Lie algebra \mathfrak{g}, with underlying vector space $T_{\mathrm{e}} \mathrm{G}$.

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Z]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. The Lie algebra \mathfrak{g} of the Lie group
G is by definition

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

As a vector space, the tangent space of $\mathbf{G L}(n, \mathbb{R})$ at $\mathrm{e}=\mathrm{I}$ can of course be identified with

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

As a vector space, the tangent space of $\mathbf{G L}(n, \mathbb{R})$ at $\mathrm{e}=\mathrm{I}$ can of course be identified with

$$
\{n \times n \text { real matrices } \mathrm{A}\}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA} .
$$

As a vector space, the tangent space of $\mathbf{G L}(n, \mathbb{R})$ at $\mathrm{e}=\mathrm{I}$ can of course be identified with

$$
\{n \times n \text { real matrices } \mathrm{A}\}
$$

because $\mathbf{G L}(n, \mathbb{R})$ is an open set in the $n \times n$ real matrices.

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

As a vector space, the tangent space of $\mathbf{G L}(n, \mathbb{R})$ at $\mathrm{e}=I$ can of course be identified with

$$
\{n \times n \text { real matrices } \mathrm{A}\}
$$

because $\mathbf{G L}(n, \mathbb{R})$ is an open set in the $n \times n$ real matrices. But there is still something to check, because this doesn't tell us what the bracket operation is!

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A
$$

Coordinatize $\mathbf{G L}(n, \mathbb{R})$ by

$$
Y=\left[\begin{array}{ccc}
Y_{1}^{1} & \cdots & Y_{n}^{1} \\
\vdots & & \vdots \\
Y_{1}^{n} & \cdots & Y_{n}^{n}
\end{array}\right]
$$

$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$.

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A
$$

Coordinatize $\mathbf{G L}(n, \mathbb{R})$ by

$$
Y=\left[\begin{array}{ccc}
Y_{1}^{1} & \cdots & Y_{n}^{1} \\
\vdots & & \vdots \\
Y_{1}^{n} & \cdots & Y_{n}^{n}
\end{array}\right]
$$

Left-invariant vector fields:

$$
Y_{j}^{k} A_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}
$$

with value at the matrix Y given by matrix Y A.

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

$$
\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right]
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A
$$

$$
\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right]=Y_{j}^{k} \mathrm{~A}_{i}^{j}\left(\delta_{k}^{c} \delta_{b}^{i}\right) \mathrm{B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}-Y_{b}^{c} \mathrm{~B}_{a}^{b}\left(\delta_{c}^{k} \delta_{j}^{a}\right) \mathrm{A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A
$$

$$
\begin{aligned}
{\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right] } & =Y_{j}^{k} \mathrm{~A}_{i}^{j}\left(\delta_{k}^{c} \delta_{b}^{i}\right) \mathrm{B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}-Y_{b}^{c} \mathrm{~B}_{a}^{b}\left(\delta_{c}^{k} \delta_{j}^{a}\right) \mathrm{A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{b}^{j} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{k}}-Y_{b}^{k} \mathrm{~B}_{a}^{b} \mathrm{~A}_{i}^{a} \frac{\partial}{\partial Y_{i}^{k}}
\end{aligned}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

$$
\begin{aligned}
{\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right] } & =Y_{j}^{k} \mathrm{~A}_{i}^{j}\left(\delta_{k}^{c} \delta_{b}^{i}\right) \mathrm{B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}-Y_{b}^{c} \mathrm{~B}_{a}^{b}\left(\delta_{c}^{k} \delta_{j}^{a}\right) \mathrm{A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{b}^{j} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{k}}-Y_{b}^{k} \mathrm{~B}_{a}^{b} \mathrm{~A}_{i}^{a} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{\ell}^{j} \mathrm{~B}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}}-Y_{j}^{k} \mathrm{~B}_{\ell}^{j} \mathrm{~A}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}}
\end{aligned}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

$$
\begin{aligned}
{\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right] } & =Y_{j}^{k} \mathrm{~A}_{i}^{j}\left(\delta_{k}^{c} \delta_{b}^{i}\right) \mathrm{B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}-Y_{b}^{c} \mathrm{~B}_{a}^{b}\left(\delta_{c}^{k} \delta_{j}^{a}\right) \mathrm{A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{b}^{j} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{k}}-Y_{b}^{k} \mathrm{~B}_{a}^{b} \mathrm{~A}_{i}^{a} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{\ell}^{j} \mathrm{~B}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}}-Y_{j}^{k} \mathrm{~B}_{\ell}^{j} \mathrm{~A}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k}[\mathrm{~A}, \mathrm{~B}]_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}
\end{aligned}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

$$
\begin{aligned}
{\left[Y_{j}^{k} \mathrm{~A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}, Y_{b}^{c} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}\right] } & =Y_{j}^{k} \mathrm{~A}_{i}^{j}\left(\delta_{k}^{c} \delta_{b}^{i}\right) \mathrm{B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{c}}-Y_{b}^{c} \mathrm{~B}_{a}^{b}\left(\delta_{c}^{k} \delta_{j}^{a}\right) \mathrm{A}_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{b}^{j} \mathrm{~B}_{a}^{b} \frac{\partial}{\partial Y_{a}^{k}}-Y_{b}^{k} \mathrm{~B}_{a}^{b} \mathrm{~A}_{i}^{a} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k} \mathrm{~A}_{\ell}^{j} \mathrm{~B}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}}-Y_{j}^{k} \mathrm{~B}_{\ell}^{j} \mathrm{~A}_{i}^{\ell} \frac{\partial}{\partial Y_{i}^{k}} \\
& =Y_{j}^{k}[\mathrm{~A}, \mathrm{~B}]_{i}^{j} \frac{\partial}{\partial Y_{i}^{k}}
\end{aligned}
$$

Proposition. The Lie algebra of $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})$ is naturally isomorphic to

$$
\mathfrak{g}=\mathfrak{g l}(n, \mathbb{R})=\{n \times n \text { real matrices } \mathrm{A}\}
$$

equipped with the operation [,] defined by

$$
[A, B]=A B-B A .
$$

This now also gives us the right to also represent Lie algebras of Lie subgroups $G \subset \mathbf{G L}(n, \mathbb{R})$ as Lie algebras of matrices...

