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Definition. A Lie group G is a smooth manifold
that is also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

•The group multiplication operation

G× G −→ G

(a, b) 7→ ab

is a smooth map; and

• the group inversion operation

G −→ G

a 7→ a−1

is also a smooth map.

I’ll typically denote identity element by e ∈ G.
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Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.

But multiplication induces a smooth map

TG× TG→ TG

So as a ∈ G varies, we get an isomorphism

G× TeG −→ TG.
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:

Definition. A vector field X on G is called left-
invariant iff

La∗X = X ∀a ∈ G.

Lemma. A vector field X is left-invariant iff

X|a = La∗ (X|e) .
Set

g = {left-invariant vector fields on G}.
Thus, as a vector space

g = TeG.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

Thus, we have now shown that every Lie group G
has an associated Lie algebra g, with underlying
vector space TeG.
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Z]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

Definition. The Lie algebra g of the Lie group
G is by definition

g = {left-invariant vector fields on G}.
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Proposition. The Lie algebra of g = gl(n,R) is
naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.
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Proposition. The Lie algebra of g = gl(n,R) is
naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.

As a vector space, the tangent space of GL(n,R)
at e = I can of course be identified with

{n× n real matrices A}
because GL(n,R) is an open set in the n× n real matrices.
But there is still something to check, because this
doesn’t tell us what the bracket operation is!

g = {left-invariant vector fields on G}.
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Proposition. The Lie algebra of g = gl(n,R) is
naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.

Coordinatize GL(n,R) by

Y =

 Y 1
1 · · · Y

1
n

... ...
Y n1 · · · Y

n
n

 .
Left-invariant vector fields:

Y kjA
j
i
∂

∂Y ki
with value at the matrix Y given by matrix Y A.
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Proposition. The Lie algebra of g = gl(n,R) is
naturally isomorphic to

g = gl(n,R) = {n× n real matrices A}
equipped with the operation [ , ] defined by

[A,B] = AB− BA.

This now also gives us the right to also represent
Lie algebras of Lie subgroups G ⊂ GL(n,R) as Lie
algebras of matrices. . .
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