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Definition. A Lie group G is a smooth manifold
that 1s also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

e The group multiplication operation

GxG—G
(a, b) — ab

1S a smooth map,; and
e the group inversion operation

G — G

aléa_1

1S also a smooth map.

I'll typically denote identity element by e € G.
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Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG= G x TG,

Proof. Given any a € G, let

L,:G—G
be left translation, defined by

La(b) = ab.
[ts derivative gives an isomorphism

Lol 1 TeG — T5G.
But multiplication induces a smooth map
TGxTG—TG

So as a € G varies, we get an isomorphism

G X TG — TG,
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This trivialization
TG= G x 1.6
oives rise to special vector fields:

Definition. A vector field X on G s called left-
invariant iff

Loy X =X Va € G.

Lemma. A vector field X s left-invariant iff
Xl|a = Lax (X|e) -
Set
g = {left-invariant vector fields on G}.

Thus, as a vector space
g — TeG



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}

with an operation



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}

with an operation

L ]rgxg—g



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 7] =X, Z]+|Y,Z], [tX,Y]=tX,Y] etc



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 7] =X, Z]+|Y,Z], [tX,Y]=tX,Y] etc

2. Skew symmetry:



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 72| =[X,Z]4+|Y,Z], [tX,Y]=tX,Y]
2. Skew symmetry:
X, Y] = -[Y, X]

etc.



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 7] =X, Z]+|Y,Z], [tX,Y]=tX,Y] etc
2. Skew symmetry:
X, Y] = -[Y, X]
3. Jacobt tdentity:



Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y, 7] =X, Z]+|Y,Z], [tX,Y]=tX,Y] etc
2. Skew symmetry:
X, Y] = -[Y, X]
3. Jacobt tdentity:
XY, Z)+ Y, |2, X]|+ [Z,[X,Y]] = 0.



Definition. A Lie algebra g is a finite-dimensional
R-vector space



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation



Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[, Jigxg—g



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

s Jrgxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec
2. Skew symmetry:
X, Y] = [V, X]



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec
2. Skew symmetry:
X,Y]=-]Y, X]
3. Jacobi identity:
X, Y, Z]+ Y, |Z, X]|+ |Z,|X,Y]] =0.



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec
2. Skew symmetry:
X,Y]=-]Y, X]
3. Jacobi identity:
X, Y, Z]+ Y, |Z, X]|+ |Z,|X,Y]] =0.

Thus, we have now shown that every Lie group G
has an associated Lie algebra g, with underlying
vector space TeG.



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec
2. Skew symmetry:
X,Y]=-]Y, X]
3. Jacobi identity:
X, Y, Z]+ Y, |Z, X]|+ |Z,|X,Y]] =0.



Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Z|+|Y,Z], [tX,Y|=tX,Y] etec
2. Skew symmetry:
X,Y]=-]Y, X]
3. Jacobi identity:
X, Y, Z]+ Y, |Z, X]|+ |Z,|X,Y]] =0.

Definition. The Lie algebra g of the Lie group
G 15 by definition

g = {left-invariant vector fields on G}.
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because GL(n, R) is an open set in the n X n real matrices.
But there is still something to check, because this
doesn’t tell us what the bracket operation is!
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Left-invariant vector fields:
kpd O
Y] Ai ayk

with value at the matrix Y given by matrix Y A.
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Proposition. The Lie algebra of g = gl(n,R) is
naturally isomorphic to

g =gl(n,R) = {n x n real matrices A}
equipped with the operation | , | defined by
A,B| = AB — BA.

This now also gives us the right to also represent
Lie algebras of Lie subgroups G C GL(n, R) as Lie
algebras of matrices. . .



