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Announcement:

Next Tuesday, the class will start at rough 10 am
because I will be giving a seminar that morning.
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Definition. A Lie group G is a smooth manifold
that 1s also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

e The group multiplication operation

GxG—G
(a, b) — ab

1S a smooth map,; and
e the group inversion operation

G — G

aléa_1

1S also a smooth map.

I'll typically denote identity element by e € G.
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Proposition. If G is any Lie group, then its tan-
gent bundle T'G — G is trivial as a vector bundle.

That 1s
TG =G x RY

where N = dim G.

For example, S cannot be made into a Lie group,
because any vector field on S has a zero:

X(5°) =2 £0.

The only spheres that admit Lie group structures
are

Sl oand  S°
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-

gent bundle T'G — G is trivial as a vector bundle.
That s
TG=GxTG.

Proot. Given any a € G, let
L,:G—G
be lett translation, defined by
L,(b) = ab.
[ts derivative gives an isomorphism
Lol 1 TeG — T,G.
So as a € G varies, we get an isomorphism

G X TG — TG.
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This trivialization
TG= G x 1.6
oives rise to special vector fields:

Definition. A vector field X on G s called left-
invariant iff

Loy X =X Va € G.

Lemma. A vector field X s left-invariant iff
Xl|a = Lax (X|e) -
Set
g = {left-invariant vector fields on G}.

Thus, as a vector space
g — TeG



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If ® is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If ® is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

In particular, if ®,X = X and ®,Y =Y then



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If ® is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

In particular, if ®,X = X and ®,Y =Y then
O X, Y] =D, X, DY) =X, Y]



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If ® is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

In particular, if ®,X = X and ®,Y =Y then
O X, Y] =D, X, DY) =X, Y]

Thus, if X and Y are vector fields on G which are
invariant under ® = L,, their Lie bracket | X, Y] is
also La-invariant.



Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If ® is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

In particular, if ®,X = X and ®,Y =Y then
O X, Y] =D, X, DY) =X, Y]

Thus, if X and Y are vector fields on G which are
invariant under & = L, their Lie bracket | X, Y]
is also La-invariant. Letting a range over all of G,
we thus conclude that the Lie bracket of two lett-
invariant vector fields is itself left-invariant.
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Proposition. If X and Y are left-invariant vec-
tor fields, then | X,Y] is left-invariant, too.

The Lie bracket of vector fields thus equips
g = {left-invariant vector fields on G}
with an operation
L Jrgxg—g
with the following properties
1. Bilinearity:
X+Y,7Z]=[X,Y]+|Y,Z], [tX,Y]|=tX,Y], etc
2. Skew symmetry:
X, Y] = -[Y, X]
3. Jacobt tdentity:
XY, Z)+ Y, 2, X]|+ [Z,[X,Y]] = 0.
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Definition. A Lie algebra g s a finite-dimensional
R-vector space that is equipped with an operation

L Jraxg—g
with the following properties
1. Bilinearity:
X+Y.Z| =X, Y+|Y,Z], [tX,Y]=tX,Y]|, etc.
2. Skew symmetry:
X,Y]=-]Y, X]
3. Jacobi identity:
X, Y, Z]+ Y, |Z, X]||+ |Z,|X,Y]] =0.

Thus, we have now shown that every Lie group G
has an associated Lie algebra g, with underlying
vector space TeG.



