MAT 552

Introduction to
Lie Groups and Lie Algebras

Claude LeBrun
Stony Brook University
February 11, 2021

Announcement:

Next Tuesday, the class will start at rough 10 am because I will be giving a seminar that morning.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure,

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.

Definition. A Lie group G is a smooth manifold that is also equipped with a group structure, in such a way that these two structures are compatible, in the precise sense that

- The group multiplication operation

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& (a, b) \mapsto a b
\end{aligned}
$$

is a smooth map; and

- the group inversion operation

$$
\begin{aligned}
& G \longrightarrow G \\
& a \longmapsto a^{-1}
\end{aligned}
$$

is also a smooth map.
I'll typically denote identity element by $\mathrm{e} \in \mathrm{G}$.

Most manifolds can't be made into Lie groups!

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle.

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.
For example, $S^{2 m}$ cannot be made into a Lie group, because any vector field on $S^{2 m}$ has a zero:

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.
For example, $S^{2 m}$ cannot be made into a Lie group, because any vector field on $S^{2 m}$ has a zero:

$$
\chi\left(S^{2 m}\right) \neq 0
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.
For example, $S^{2 m}$ cannot be made into a Lie group, because any vector field on $S^{2 m}$ has a zero:

$$
\chi\left(S^{2 m}\right)=2 \neq 0
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.
For example, $S^{2 m}$ cannot be made into a Lie group, because any vector field on $S^{2 m}$ has a zero:

$$
\chi\left(S^{2 m}\right)=2 \neq 0
$$

In fact, the only spheres with trivial tangent bundle are

$$
S^{1}, \quad S^{3}, \quad \text { and } S^{7} .
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times \mathbb{R}^{N}
$$

where $N=\operatorname{dim} G$.
For example, $S^{2 m}$ cannot be made into a Lie group, because any vector field on $S^{2 m}$ has a zero:

$$
\chi\left(S^{2 m}\right)=2 \neq 0
$$

The only spheres that admit Lie group structures are

$$
S^{1} \quad \text { and } \quad S^{3} .
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation,

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab}
$$

This is a diffeomorphism, with inverse

$$
L_{\mathrm{a}}^{-1}=L_{\mathrm{a}-1} .
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

But multiplication induces a smooth map

$$
\mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab}
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

But multiplication induces a smooth map

$$
\mathrm{G} \times T \mathrm{G} \rightarrow T \mathrm{G}
$$

Most manifolds can't be made into Lie groups!
Proposition. If G is any Lie group, then its tangent bundle $T \mathrm{G} \rightarrow \mathrm{G}$ is trivial as a vector bundle. That is

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

Proof. Given any $a \in G$, let

$$
L_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}
$$

be left translation, defined by

$$
L_{\mathrm{a}}(\mathrm{~b})=\mathrm{ab} .
$$

Its derivative gives an isomorphism

$$
\left.L_{\mathrm{a} *}\right|_{\mathrm{e}}: T_{\mathrm{e}} \mathrm{G} \rightarrow T_{\mathrm{a}} \mathrm{G}
$$

So as a $\in G$ varies, we get an isomorphism

$$
\mathrm{G} \times T_{\mathrm{e}} \mathrm{G} \longrightarrow T \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

This trivialization

$$
T \mathrm{G} \cong \mathrm{G} \times T_{\mathrm{e}} \mathrm{G}
$$

gives rise to special vector fields:
Definition. A vector field X on G is called leftinvariant iff

$$
L_{\mathrm{a} *} X=X \quad \forall \mathrm{a} \in \mathrm{G}
$$

Lemma. A vector field X is left-invariant iff

$$
\left.X\right|_{\mathrm{a}}=L_{\mathrm{a} *}\left(\left.X\right|_{\mathrm{e}}\right)
$$

Set

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\} .
$$

Thus, as a vector space

$$
\mathfrak{g}=T_{\mathrm{e}} \mathrm{G} .
$$

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold, then any pair of vector fields satisfies

$$
\left[\Phi_{*} X, \Phi_{*} Y\right]=\Phi_{*}[X, Y]
$$

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold, then any pair of vector fields satisfies

$$
\left[\Phi_{*} X, \Phi_{*} Y\right]=\Phi_{*}[X, Y] .
$$

In particular, if $\Phi_{*} X=X$ and $\Phi_{*} Y=Y$, then

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold, then any pair of vector fields satisfies

$$
\left[\Phi_{*} X, \Phi_{*} Y\right]=\Phi_{*}[X, Y] .
$$

In particular, if $\Phi_{*} X=X$ and $\Phi_{*} Y=Y$, then

$$
\Phi_{*}[X, Y]=\left[\Phi_{*} X, \Phi_{*} Y\right]=[X, Y] .
$$

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold, then any pair of vector fields satisfies

$$
\left[\Phi_{*} X, \Phi_{*} Y\right]=\Phi_{*}[X, Y]
$$

In particular, if $\Phi_{*} X=X$ and $\Phi_{*} Y=Y$, then

$$
\Phi_{*}[X, Y]=\left[\Phi_{*} X, \Phi_{*} Y\right]=[X, Y] .
$$

Thus, if X and Y are vector fields on G which are invariant under $\Phi=L_{\mathrm{a}}$, their Lie bracket $[X, Y]$ is also L_{a}-invariant.

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold, then any pair of vector fields satisfies

$$
\left[\Phi_{*} X, \Phi_{*} Y\right]=\Phi_{*}[X, Y]
$$

In particular, if $\Phi_{*} X=X$ and $\Phi_{*} Y=Y$, then

$$
\Phi_{*}[X, Y]=\left[\Phi_{*} X, \Phi_{*} Y\right]=[X, Y] .
$$

Thus, if X and Y are vector fields on G which are invariant under $\Phi=L_{\mathrm{a}}$, their Lie bracket $[X, Y]$ is also L_{a}-invariant. Letting a range over all of G , we thus conclude that the Lie bracket of two leftinvariant vector fields is itself left-invariant.

Proposition. If X and Y are left-invariant vector fields on G, then their Lie bracket is leftinvariant, too.

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips
$\mathfrak{g}=\{$ left-invariant vector fields on $G\}$
with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

Proposition. If X and Y are left-invariant vector fields, then $[X, Y]$ is left-invariant, too.

The Lie bracket of vector fields thus equips

$$
\mathfrak{g}=\{\text { left-invariant vector fields on } \mathrm{G}\}
$$

with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Definition. A Lie algebra \mathfrak{g} is a finite-dimensional \mathbb{R}-vector space that is equipped with an operation

$$
[,]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

with the following properties

1. Bilinearity:

$$
[X+Y, Z]=[X, Y]+[Y, Z], \quad[t X, Y]=t[X, Y], \quad \text { etc. }
$$

2. Skew symmetry:

$$
[X, Y]=-[Y, X]
$$

3. Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

Thus, we have now shown that every Lie group G has an associated Lie algebra \mathfrak{g}, with underlying vector space $T_{\mathrm{e}} \mathrm{G}$.

