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Announcement:

Next Tuesday, the class will start at rough 10 am
because I will be giving a seminar that morning.
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Definition. A Lie group G is a smooth manifold
that is also equipped with a group structure,
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G× G −→ G

(a, b) 7→ ab

is a smooth map; and

5



Definition. A Lie group G is a smooth manifold
that is also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

•The group multiplication operation

G× G −→ G

(a, b) 7→ ab

is a smooth map; and

• the group inversion operation

G −→ G

a 7→ a−1

is also a smooth map.
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Definition. A Lie group G is a smooth manifold
that is also equipped with a group structure, in
such a way that these two structures are com-
patible, in the precise sense that

•The group multiplication operation

G× G −→ G

(a, b) 7→ ab

is a smooth map; and

• the group inversion operation

G −→ G

a 7→ a−1

is also a smooth map.

I’ll typically denote identity element by e ∈ G.
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Most manifolds can’t be made into Lie groups!
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Proposition. If G is any Lie group, then its tan-
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That is
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where N = dimG.

For example, S2m cannot be made into a Lie group,
because any vector field on S2m has a zero:
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× RN

where N = dimG.

For example, S2m cannot be made into a Lie group,
because any vector field on S2m has a zero:

χ(S2m) 6= 0.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× RN

where N = dimG.

For example, S2m cannot be made into a Lie group,
because any vector field on S2m has a zero:

χ(S2m) = 2 6= 0.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× RN

where N = dimG.

For example, S2m cannot be made into a Lie group,
because any vector field on S2m has a zero:

χ(S2m) = 2 6= 0.

In fact, the only spheres with trivial tangent bundle
are

S1, S3, and S7.

14



Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× RN

where N = dimG.

For example, S2m cannot be made into a Lie group,
because any vector field on S2m has a zero:

χ(S2m) = 2 6= 0.

The only spheres that admit Lie group structures
are

S1 and S3.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.
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Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is
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Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by
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Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

This is a diffeomorphism, with inverse

L−1
a = La−1.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

20



Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.

But multiplication induces a smooth map

G× G→ G
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.

But multiplication induces a smooth map

G× TG→ TG
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Most manifolds can’t be made into Lie groups!

Proposition. If G is any Lie group, then its tan-
gent bundle TG→ G is trivial as a vector bundle.
That is

TG ∼= G× TeG.

Proof. Given any a ∈ G, let

La : G→ G

be left translation, defined by

La(b) = ab.

Its derivative gives an isomorphism

La∗|e : TeG→ TaG.

So as a ∈ G varies, we get an isomorphism

G× TeG −→ TG.
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:

Definition. A vector field X on G is called left-
invariant iff

La∗X = X ∀a ∈ G.
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:

Definition. A vector field X on G is called left-
invariant iff

La∗X = X ∀a ∈ G.

Lemma. A vector field X is left-invariant iff

X|a = La∗ (X|e) .
Set

g = {left-invariant vector fields on G}.
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This trivialization

TG ∼= G× TeG
gives rise to special vector fields:

Definition. A vector field X on G is called left-
invariant iff

La∗X = X ∀a ∈ G.

Lemma. A vector field X is left-invariant iff

X|a = La∗ (X|e) .
Set

g = {left-invariant vector fields on G}.
Thus, as a vector space

g = TeG.
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

[Φ∗X,Φ∗Y ] = Φ∗[X,Y ].
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Proposition. If X and Y are left-invariant vec-
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then any pair of vector fields satisfies
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

[Φ∗X,Φ∗Y ] = Φ∗[X,Y ].

In particular, if Φ∗X = X and Φ∗Y = Y , then

Φ∗[X,Y ] = [Φ∗X,Φ∗Y ] = [X,Y ].
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

[Φ∗X,Φ∗Y ] = Φ∗[X,Y ].

In particular, if Φ∗X = X and Φ∗Y = Y , then

Φ∗[X,Y ] = [Φ∗X,Φ∗Y ] = [X,Y ].

Thus, if X and Y are vector fields on G which are
invariant under Φ = La, their Lie bracket [X,Y ] is
also La-invariant. Letting a range over all of G,
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.

Proof. If Φ is any self-diffeomorphism of a manifold,
then any pair of vector fields satisfies

[Φ∗X,Φ∗Y ] = Φ∗[X,Y ].

In particular, if Φ∗X = X and Φ∗Y = Y , then

Φ∗[X,Y ] = [Φ∗X,Φ∗Y ] = [X,Y ].

Thus, if X and Y are vector fields on G which are
invariant under Φ = La, their Lie bracket [X,Y ]
is also La-invariant. Letting a range over all of G,
we thus conclude that the Lie bracket of two left-
invariant vector fields is itself left-invariant.

QED
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Proposition. If X and Y are left-invariant vec-
tor fields on G, then their Lie bracket is left-
invariant, too.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g
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Proposition. If X and Y are left-invariant vec-
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with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Y ]+[Y , Z], [tX, Y ] = t[X,Y ], etc.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.
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Proposition. If X and Y are left-invariant vec-
tor fields, then [X,Y ] is left-invariant, too.

The Lie bracket of vector fields thus equips

g = {left-invariant vector fields on G}
with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Y ]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation
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Definition. A Lie algebra g is a finite-dimensional
R-vector space that is equipped with an operation

[ , ] : g× g→ g

with the following properties

1. Bilinearity:

[X + Y , Z] = [X,Y ]+[Y , Z], [tX, Y ] = t[X,Y ], etc.

2. Skew symmetry:

[X,Y ] = −[Y ,X ]

3. Jacobi identity:

[X, [Y , Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0.

Thus, we have now shown that every Lie group G
has an associated Lie algebra g, with underlying
vector space TeG.
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