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d
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with γ(0) = p, for some ε > 0. Moreover, if
V 6= 0, image of γ is an embedded submanifold.
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[V 1, Ṽ j] = 0
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Theorem (Frobenius). There exists an integral
manifold through every p ∈M ⇐⇒

[Γ(D),Γ(D)] ⊂ Γ(D)
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Theorem (Frobenius). There exists an integral
manifold through every p ∈M ⇐⇒

[Γ(D),Γ(D)] ⊂ Γ(D)

everywhere on M . Moreover, when this happens,
can find coordinates (x1, . . . , xn) near any p ∈
M in which

D = span { ∂
∂x1

, . . .
∂

∂x`
}.
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Then D involutive ⇐⇒
ϕ(V ) = ϕ(W ) = 0 =⇒ ϕ([V ,W ]) = 0.

But

(dϕ)(V,W) = Vϕ(W)−Wϕ(V)− ϕ([V,W])

so D involutive ⇐⇒
dϕ = ϕ ∧ ψ, ∃ψ ∈ Ω1.
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Example: Suppose ` = n− 1, and

D = kerϕ,

where ϕ is a 1-form which is everywhere 6= 0.

Then D involutive ⇐⇒
ϕ(V ) = ϕ(W ) = 0 =⇒ ϕ([V ,W ]) = 0.

But

(dϕ)(V,W) = Vϕ(W)−Wϕ(V)− ϕ([V,W])

so D involutive ⇐⇒

ϕ ∧ dϕ = 0.
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