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is a linear map R — R, and so must be multiplica-
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The homotopy invariance of the degree is actually
symptomatic of a more general principle. . .
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For this, it suflices to prove. ..



Proposition. The first-factor projection
w: MXR—M

induces an 1somorphism

o HYO) S HE(M xR) k.




Proposition. The first-factor projection
w:MxR— M

induces an 1somorphism

o HYO) S HE(M xR) k.

Cartan’s Magic Formula: If ¢ € QF(M),
then, for any V € X(M), then

Lye =Vidp+dVip).

When ¢ is closed:
Ly =dVap).



Proposition. The first-factor projection
w: M x0,1] - M
induces an 1somorphism

o RN S HR (M < [0,1]) Yk



Homotopy Invariance:



Homotopy Invariance:

Theorem. If FF : M — N 1is smoothly homo-
topic to G : M — N, then
F*=G*: HY(N) = HF(M)

for every integer k.



Homotopy Invariance:
Theorem. If FF : M — N 1is smoothly homo-
topic to G : M — N, then

F*=G*: HY(N) = HF(M)

for every integer k.

Assumption is that there is a smooth map
¢ M x|[0,1] = N
that gives F"on M x {0} and G on M x {1}.
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[t follows that
Hj—l(Sn—l) ~ H](S’n)
for all > 2, n > 2.

Since we already know H'(S™) = 0 for all m > 2.
induction yields. ..

Proposition.

Hk(Sn): {]R if k=0 orn,

0 otheruise.
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By contrast, we’ll also see:

Theorem. Let M"™ be a connected, n-manifold
(without boundary). If M is either non-compact
or non-orientable, then

H™(M") = 0.

Same conclusion if M compact manifold-with-boundary;,
where OM # &.
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for any ¢ € QP 1(R™), suffices to prove. ..
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for some compactly supported form ) € QP ~HR™).

Then

Have already seen for n = 1.

Now proceed by induction. . .
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By contrast. ..
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To see this, first recall. ..
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Proposition. Suppose that M s a connected,
non-orientable manifold. Then there is a 2-to-1

covering map M — M, where M 1is a connected,
orientable manafold.

Let o : M — M be the oriented double cover.
Let @ : M — M be interchange of two sheets.
Then & reverses orientation of /]\\4/, and

P? = identity.
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If © an n-form on M, then

/N w o = 0.
M

Since M compact, connected, = w™*p = di,
wrp = ddP* Y.

oo = d <¢ +2®W> — i)

w = di).
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Theorem. If M" is a connected, non-orientable
smooth n-manifold, then

H™(M") = 0.

That 1s, any n-form on M 1is exact.

Same trick used in non-compact case. . .
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Theorem. If M" is a non-compact, connected
smooth n-manifold (without boundary), then

H™(M") = 0.

That 1s, any n-form on M 1is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

O
o= ¥
j=1
where all ¢; compactly supported, with f p; = 0.

Thus ¢ = d(}_7;), where sum is locally finite.

Deduce non-orientable case by our double-cover trick.



