MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

May 5, 2020

De Rham complex:

De Rham complex:

$$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$$

De Rham complex:

$$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^k(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$$

Complex: $d^2 = 0$.

De Rham complex:

$$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^k(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$$

Complex: $d^2 = 0$.

Image $d \subset \ker d$

De Rham complex:

$$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$$

Complex: $d^2 = 0$.

Image $d \subset \ker d$

$$H^{k}(M) := \frac{\ker d : \Omega^{k}(M) \to \Omega^{k+1}(M)}{\operatorname{Image } d : \Omega^{k-1}(M) \to \Omega^{k}(M)}$$

Then $H^1(M) = 0$.

Then $H^1(M) = 0$.

Proof.

Then $H^1(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Then $H^1(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show:

Then $H^1(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Then $H^1(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then $H^{1}(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma: [0,1] \to M$.

Define f(q)

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma : [0,1] \to M$.

Define $f(q) := \int_{\gamma} \varphi$

Then $H^1(M) = 0$.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

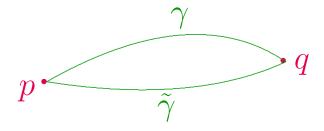
Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma: [0,1] \to M$.



Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

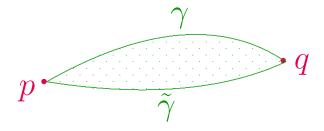
Independent of γ

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma: [0,1] \to M$.



Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

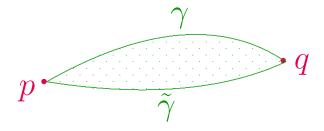
Independent of γ by smooth homotopy

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma : [0,1] \to M$.



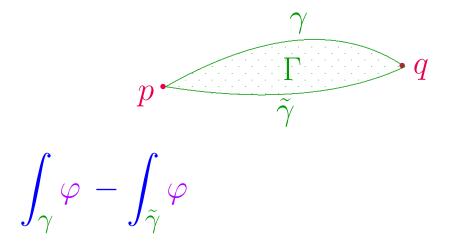
Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

Independent of γ by smooth homotopy & Stokes'.

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

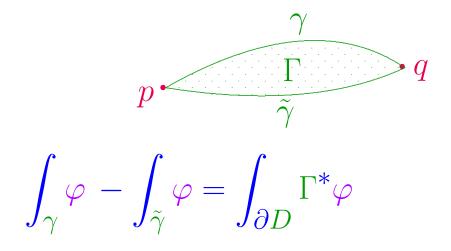
Choose base-point $p \in M$.



Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.



Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

$$p \xrightarrow{\Gamma} q$$

$$\int_{\gamma} \varphi - \int_{\tilde{\gamma}} \varphi = \int_{\partial D} \Gamma^* \varphi = \int_{D} d\Gamma^* \varphi$$

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

$$p \xrightarrow{\Gamma} q$$

$$\int_{\gamma} \varphi - \int_{\tilde{\gamma}} \varphi = \int_{\partial D} \Gamma^* \varphi = \int_{D} \Gamma^* d\varphi$$

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

$$p \xrightarrow{\widetilde{\gamma}} q$$

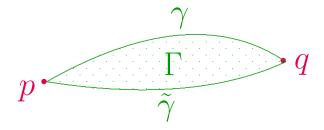
$$\int_{\gamma} \varphi - \int_{\widetilde{\gamma}} \varphi = \int_{\partial D} \Gamma^* \varphi = \int_{D} \Gamma^* d\varphi = 0.$$

Proof. Let 1-form φ , with $d\varphi = 0$, be given.

Need to show: $\varphi = df$, $\exists f \in C^{\infty}(M)$.

Choose base-point $p \in M$.

Then can reach any $q \in M$ from p via a smooth path $\gamma : [0,1] \to M$.



Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

Independent of γ by smooth homotopy & Stokes'.

Theorem.

Theorem. For M any connected manifold,

Theorem. For M any connected manifold, $H^1(M)$

Theorem. For M any connected manifold, $H^1(M) = Hom \ (\pi_1(M), \mathbb{R}).$

Theorem. For M any connected manifold, $H^1(M) = Hom \ (\pi_1(M), \mathbb{R}).$

Idea: Homomorphism is given by integrating closed 1-forms around loops.

Theorem. For M any connected manifold, $H^1(M) = Hom \ (\pi_1(M), \mathbb{R}).$

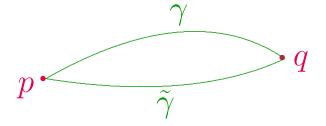
Idea: Homomorphism is given by integrating closed 1-forms around loops.

Closed 1-form is exact \iff all loop integrals vanish.

Theorem. For M any connected manifold, $H^1(M) = Hom \ (\pi_1(M), \mathbb{R}).$

Idea: Homomorphism is given by integrating closed 1-forms around loops.

Closed 1-form is exact \iff all loop integrals vanish.

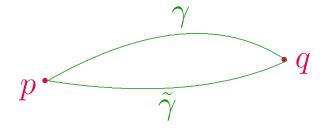


Generalization:

Theorem. For M any connected manifold, $H^1(M) = Hom \ (\pi_1(M), \mathbb{R}).$

Idea: Homomorphism is given by integrating closed 1-forms around loops.

Closed 1-form is exact \iff all loop integrals vanish.



Define
$$f(\mathbf{q}) := \int_{\gamma} \varphi = \int_{0}^{1} \gamma^{*} \varphi$$
.

Recall:

Recall:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then $H^n(M^n) \cong \mathbb{R},$

Recall:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary),

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map,

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

is a linear map $\mathbb{R} \to \mathbb{R}$,

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

is a linear map $\mathbb{R} \to \mathbb{R}$, and so must be multiplication by some real number deg F.

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

is a linear map $\mathbb{R} \to \mathbb{R}$, and so must be multiplication by some real number deg F.

That is, if there is a unique number $\deg F$ such that

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

is a linear map $\mathbb{R} \to \mathbb{R}$, and so must be multiplication by some real number deg F.

That is, if there is a unique number $\deg F$ such that

$$\int_{M} F^* \varphi = (\deg F) \int_{N} \varphi$$

Thus, if M and N are two compact, connected, oriented n-manifolds (without boundary), and if

$$F:M\to N$$

is a smooth map, then

$$F^*: H^n(N) \to H^n(M)$$

is a linear map $\mathbb{R} \to \mathbb{R}$, and so must be multiplication by some real number deg F.

That is, if there is a unique number $\deg F$ such that

$$\int_{M} F^* \varphi = (\deg F) \int_{N} \varphi$$

for every n-form φ on N.

Proposition.

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary).

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

 $F,G:M\to N$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic,

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, in the sense that there is a smooth map

$$\Phi: M \times [0,1] \to N$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, in the sense that there is a smooth map

$$\Phi: M \times [0,1] \to N$$

whose restriction to $M \times \{0\}$ is F, and whose restriction to $M \times \{1\}$ is G,

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, in the sense that there is a smooth map

$$\Phi: M \times [0,1] \to N$$

whose restriction to $M \times \{0\}$ is F, and whose restriction to $M \times \{1\}$ is G, then they have the same degree:

$$\deg F = \deg G.$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

$$\int_{\mathbf{M}} G^* \varphi - \int_{\mathbf{M}} F^* \varphi = \int_{\partial (\mathbf{M} \times [0,1])} \Phi^* \varphi$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

$$\int_{\mathbf{M}} G^* \varphi - \int_{\mathbf{M}} F^* \varphi = \int_{\partial(\mathbf{M} \times [0,1])} \Phi^* \varphi$$
$$= \int_{\mathbf{M} \times [0,1]} d\Phi^* \varphi$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

$$\int_{M} G^{*} \varphi - \int_{M} F^{*} \varphi = \int_{\partial (M \times [0,1])} \Phi^{*} \varphi$$
$$= \int_{M \times [0,1]} \Phi^{*} d\varphi$$

Proposition. Let M and N be compact, connected, oriented n-manifolds (without boundary). If two smooth maps

$$F,G:M\to N$$

are smoothly homotopic, then they have the same degree:

$$\deg F = \deg G.$$

$$\int_{M} G^* \varphi - \int_{M} F^* \varphi = \int_{\partial (M \times [0,1])} \Phi^* \varphi$$
$$= \int_{M \times [0,1]} \Phi^* d\varphi = 0.$$

The homotopy invariance of the degree is actually symptomatic of a more general principle...

Theorem. If $F: M \to N$ is smoothly homotopic to $G: M \to N$, then $F^* = G^*: H^k(N) \to H^k(M)$

for every integer k.

Theorem. If $F: M \to N$ is smoothly homotopic to $G: M \to N$, then

$$F^* = G^* : H^k(N) \to H^k(M)$$

for every integer k.

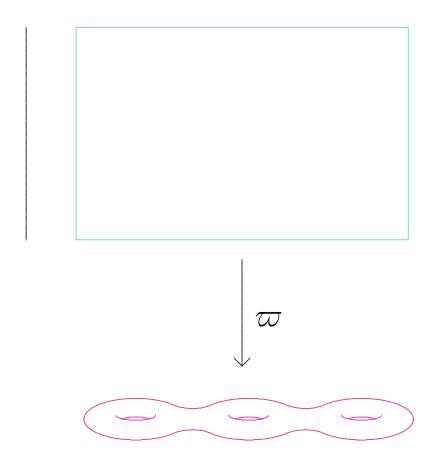
For this, it suffices to prove...

Proposition. The first-factor projection

 $\varpi: M \times \mathbb{R} \to M$

induces an isomorphism

$$\varpi^*: H^k(M) \stackrel{\cong}{\to} H^k(M \times \mathbb{R}) \qquad \forall k$$



Proposition. The first-factor projection

$$\varpi: M \times \mathbb{R} \to M$$

induces an isomorphism

$$\varpi^*: H^k(M) \stackrel{\cong}{\to} H^k(M \times \mathbb{R}) \qquad \forall k.$$

Cartan's Magic Formula: If $\varphi \in \Omega^k(M)$, then, for any $\mathsf{V} \in \mathfrak{X}(M)$, then

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V}_{\mathsf{J}} d\varphi + d(\mathsf{V}_{\mathsf{J}}\varphi).$$

When φ is closed:

$$\mathcal{L}_{\mathsf{V}}\varphi = d(\mathsf{V} \,\lrcorner\, \varphi).$$

Proposition. The first-factor projection

$$\varpi: M \times [0,1] \to M$$

induces an isomorphism

$$\varpi^*: H^k(M) \stackrel{\cong}{\to} H^k(M \times [0,1]) \qquad \forall k.$$

Homotopy Invariance:

Theorem. If $F: M \to N$ is smoothly homotopic to $G: M \to N$, then $F^* = G^*: H^k(N) \to H^k(M)$

for every integer k.

Homotopy Invariance:

Theorem. If $F: M \to N$ is smoothly homotopic to $G: M \to N$, then

$$F^* = G^* : H^k(N) \to H^k(M)$$

for every integer k.

Assumption is that there is a smooth map

$$\Phi: M \times [0,1] \to N$$

that gives F on $M \times \{0\}$ and G on $M \times \{1\}$.

But how do you actually calculate cohomology?

But how do you actually calculate cohomology?

One of the best basic tools is the following...

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

Have induced exact sequences

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

Have induced exact sequences

$$0 \to \Omega^k(\mathcal{U} \cup \mathcal{V}) \to \Omega^k(\mathcal{U}) \oplus \Omega^k(\mathcal{V}) \to \Omega^k(\mathcal{U} \cap \mathcal{V}) \to 0$$

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

Have induced exact sequences

$$0 \to \Omega^k(\mathcal{U} \cup \mathcal{V}) \to \Omega^k(\mathcal{U}) \oplus \Omega^k(\mathcal{V}) \to \Omega^k(\mathcal{U} \cap \mathcal{V}) \to 0$$

Exact: Kernel = Image at every stage.

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

$$\downarrow^{d} \qquad \downarrow^{d} \qquad 0 \rightarrow \Omega^{k-1}(\mathcal{U} \cup \mathcal{V}) \rightarrow \Omega^{k-1}(\mathcal{U}) \oplus \Omega^{k-1}(\mathcal{V}) \rightarrow \Omega^{k-1}(\mathcal{U} \cap \mathcal{V}) \rightarrow \downarrow^{d} \qquad \downarrow$$

Commutative diagram with exact rows!

Suppose $M = \mathcal{U} \cup \mathcal{V}$.

$$\downarrow^{d} \qquad \downarrow^{d} \qquad 0 \rightarrow \Omega^{k-1}(\mathcal{U} \cup \mathcal{V}) \rightarrow \Omega^{k-1}(\mathcal{U}) \oplus \Omega^{k-1}(\mathcal{V}) \rightarrow \Omega^{k-1}(\mathcal{U} \cap \mathcal{V}) \rightarrow \downarrow^{d} \qquad \downarrow$$

"Snake Lemma:" Induces long exact sequence...

$$0 \longrightarrow H^{0}(\mathcal{U} \cup \mathcal{V}) \longrightarrow H^{0}(\mathcal{U}) \oplus H^{0}(\mathcal{V}) \longrightarrow H^{0}(\mathcal{U} \cap \mathcal{V})$$

$$\downarrow h^{1}(\mathcal{U} \cup \mathcal{V}) \longrightarrow H^{1}(\mathcal{U}) \oplus H^{1}(\mathcal{V}) \longrightarrow H^{1}(\mathcal{U} \cap \mathcal{V})$$

$$\downarrow h^{2}(\mathcal{U} \cup \mathcal{V}) \longrightarrow H^{2}(\mathcal{U}) \oplus H^{2}(\mathcal{V}) \longrightarrow H^{2}(\mathcal{U} \cap \mathcal{V})$$

$$\downarrow h^{n}(\mathcal{U} \cup \mathcal{V}) \longrightarrow H^{n}(\mathcal{U}) \oplus H^{n}(\mathcal{V}) \longrightarrow H^{n}(\mathcal{U} \cap \mathcal{V})$$

For example, $S^n = \mathcal{U} \cup \mathcal{V}$,

For example, $S^n = \mathcal{U} \cup \mathcal{V}$,

where $\mathcal{U} \approx \mathbb{R}^n$ is complement of "north pole,"

For example, $S^n = \mathcal{U} \cup \mathcal{V}$,

where $\mathcal{U} \approx \mathbb{R}^n$ is complement of "north pole,"

and $\mathcal{V} \approx \mathbb{R}^n$ is complement of "south pole,"

For example, $S^n = \mathcal{U} \cup \mathcal{V}$,
where $\mathcal{U} \approx \mathbb{R}^n$ is complement of "north pole,"
and $\mathcal{V} \approx \mathbb{R}^n$ is complement of "south pole,"
while $\mathcal{U} \cap \mathcal{V} \approx \mathbb{R}^n - \{0\} \approx S^{n-1} \times \mathbb{R}$.

For example, $S^n = \mathcal{U} \cup \mathcal{V}$,

where $\mathcal{U} \approx \mathbb{R}^n$ is complement of "north pole,"

and $\mathcal{V} \approx \mathbb{R}^n$ is complement of "south pole,"

while $\mathcal{U} \cap \mathcal{V} \approx \mathbb{R}^n - \{0\} \approx S^{n-1} \times \mathbb{R}$.

Mayer-Vietoris long exact sequence therefore reads...

$$0 \longrightarrow H^{0}(S^{n}) \longrightarrow H^{0}(\mathbb{R}^{n}) \oplus H^{0}(\mathbb{R}^{n}) \longrightarrow H^{0}(S^{n-1} \times \mathbb{R})$$

$$H^{n-2}(S^{n}) \longrightarrow H^{n-2}(\mathbb{R}^{n}) \oplus H^{n-2}(\mathbb{R}^{n}) \longrightarrow H^{n-2}(S^{n-1} \times \mathbb{R})$$

$$\delta$$

$$H^{n-1}(S^{n}) \longrightarrow H^{n-1}(\mathbb{R}^{n}) \oplus H^{2}(\mathbb{R}^{n}) \longrightarrow H^{n-1}(S^{n-1} \times \mathbb{R})$$

$$\delta$$

$$\delta$$

$$H^{n}(S^{n}) \longrightarrow H^{n}(\mathbb{R}^{n}) \oplus H^{n}(\mathbb{R}^{n}) \longrightarrow H^{n}(S^{n-1} \times \mathbb{R})$$

$$H^{j-1}(S^{n-1}) \cong H^j(S^n)$$

for all $j \geq 2$, $n \geq 2$.

$$0 \longrightarrow H^{0}(S^{n}) \longrightarrow H^{0}(\mathbb{R}^{n}) \oplus H^{0}(\mathbb{R}^{n}) \longrightarrow H^{0}(S^{n-1} \times \mathbb{R})$$

$$H^{n-2}(S^{n}) \longrightarrow H^{n-2}(\mathbb{R}^{n}) \oplus H^{n-2}(\mathbb{R}^{n}) \longrightarrow H^{n-2}(S^{n-1} \times \mathbb{R})$$

$$\delta$$

$$H^{n-1}(S^{n}) \longrightarrow H^{n-1}(\mathbb{R}^{n}) \oplus H^{2}(\mathbb{R}^{n}) \longrightarrow H^{n-1}(S^{n-1} \times \mathbb{R})$$

$$\delta$$

$$\delta$$

$$H^{n}(S^{n}) \longrightarrow H^{n}(\mathbb{R}^{n}) \oplus H^{n}(\mathbb{R}^{n}) \longrightarrow H^{n}(S^{n-1} \times \mathbb{R})$$

$$H^{j-1}(S^{n-1}) \cong H^j(S^n)$$

for all $j \geq 2$, $n \geq 2$.

$$H^{j-1}(S^{n-1}) \cong H^j(S^n)$$

for all $j \geq 2$, $n \geq 2$.

Since we already know $H^1(S^m) = 0$ for all $m \ge 2$, induction yields...

$$H^{j-1}(S^{n-1}) \cong H^j(S^n)$$

for all $j \geq 2$, $n \geq 2$.

Since we already know $H^1(S^m) = 0$ for all $m \ge 2$, induction yields...

Proposition.

$$H^{k}(S^{n}) = \begin{cases} \mathbb{R} & if \ k = 0 \ or \ n, \\ 0 & otherwise. \end{cases}$$

Finally, let's shore up our foundations...

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

We'll now carefully prove:

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

We'll now carefully prove:

Theorem.

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

We'll now carefully prove:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

We'll now carefully prove:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

We'll now carefully prove:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$H^k(M) := \frac{\{\text{closed } k\text{-forms}\}}{\{\text{exact } k\text{-forms}\}}$$

We'll now carefully prove:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

$$H^k(M) := \frac{\{\text{closed } k\text{-forms}\}}{\{\text{exact } k\text{-forms}\}}$$

We'll now carefully prove:

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

That is, an n-form is exact iff its integral = 0.

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem.

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem. Let M^n be a connected, n-manifold (without boundary).

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem. Let M^n be a connected, n-manifold (without boundary). If M is either non-compact

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem. Let M^n be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem. Let M^n be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

$$H^n(M^n) = 0.$$

$$H^k(M) := rac{\{ ext{closed } k ext{-forms}\}}{\{ ext{exact } k ext{-forms}\}}$$

By contrast, we'll also see:

Theorem. Let M^n be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

$$H^n(M^n) = 0.$$

Same conclusion if M compact manifold-with-boundary, where $\partial M \neq \emptyset$.

Let $\Omega_c^k(M) = \{\text{compactly supported smooth } k\text{-forms}\}.$

Compactly supported de Rham complex:

Compactly supported de Rham complex:

$$\cdots \xrightarrow{d} \Omega_c^{k-1}(M) \xrightarrow{d} \Omega_c^k(M) \xrightarrow{d} \Omega_c^{k+1}(M) \xrightarrow{d} \Omega_c^{k+2}(M) \xrightarrow{d} \cdots$$

Compactly supported de Rham complex:

$$\cdots \xrightarrow{d} \Omega_c^{k-1}(M) \xrightarrow{d} \Omega_c^k(M) \xrightarrow{d} \Omega_c^{k+1}(M) \xrightarrow{d} \Omega_c^{k+2}(M) \xrightarrow{d} \cdots$$

Complex: $d^2 = 0$.

Compactly supported de Rham complex:

$$\cdots \xrightarrow{d} \Omega_c^{k-1}(\mathbf{M}) \xrightarrow{d} \Omega_c^k(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+1}(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+2}(\mathbf{M}) \xrightarrow{d} \cdots$$

$$d^2$$

Complex: $d^2 = 0$.

Compactly supported de Rham complex:

$$\cdots \xrightarrow{d} \Omega_c^{k-1}(\mathbf{M}) \xrightarrow{d} \Omega_c^k(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+1}(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+2}(\mathbf{M}) \xrightarrow{d} \cdots$$

$$d^2$$

Complex: $d^2 = 0$.

We may thus define

Compactly supported de Rham complex:

$$\cdots \xrightarrow{d} \Omega_c^{k-1}(\mathbf{M}) \xrightarrow{d} \Omega_c^k(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+1}(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+2}(\mathbf{M}) \xrightarrow{d} \cdots$$

$$\xrightarrow{d} \Omega_c^{k-1}(\mathbf{M}) \xrightarrow{d} \Omega_c^k(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+1}(\mathbf{M}) \xrightarrow{d} \Omega_c^{k+2}(\mathbf{M}) \xrightarrow{d} \cdots$$

Complex: $d^2 = 0$.

We may thus define

$$H_c^k(M) := \frac{\ker d : \Omega_c^k(M) \to \Omega_c^{k+1}(M)}{\operatorname{Image } d : \Omega_c^{k-1}(M) \to \Omega_c^k(M)}$$

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

Thus, a compactly supported n-form on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form iff its integral is zero.

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

Thus, a compactly supported n-form on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form iff its integral is zero.

Since Stokes' tells us that

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

Thus, a compactly supported n-form on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form iff its integral is zero.

Since Stokes' tells us that

$$\int_{\mathbb{R}^n} d\psi = 0$$

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

Thus, a compactly supported n-form on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form iff its integral is zero.

Since Stokes' tells us that

$$\int_{\mathbb{R}^n} d\psi = 0$$

for any $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$,

$$H_c^n(\mathbb{R}^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{\mathbb{R}^n} \varphi.$$

Thus, a compactly supported n-form on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form iff its integral is zero.

Since Stokes' tells us that

$$\int_{\mathbb{R}^n} d\psi = 0$$

for any $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$, suffices to prove...

Proposition.

$$\int_{\mathbb{R}^n} \varphi = 0.$$

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$.

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$.

Have already seen for n = 1.

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$.

Have already seen for n = 1.

Now proceed by induction...

Proof

Proof by induction.

Proof by induction. Assume true for \mathbb{R}^{n-1} ,

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported *n*-form

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported *n*-form $\varphi = f(x^1, \dots, x^n) dx^1 \wedge \dots \wedge dx^n$

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported n-form $\varphi = f(x^1, \dots, x^n) dx^1 \wedge \dots \wedge dx^n$ with $\int_{\mathbb{R}^n} \varphi = 0$.

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported *n*-form

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$,

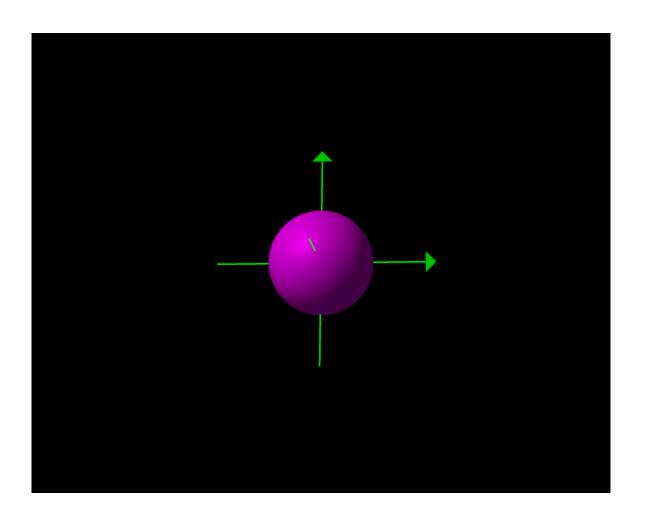
$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

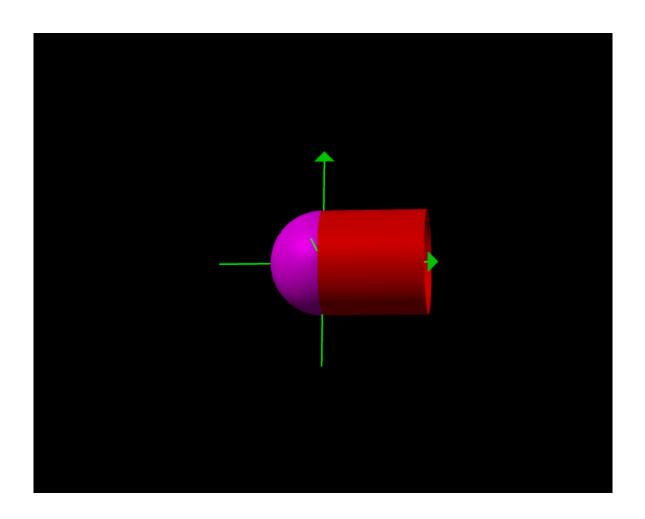
certainly satisfies $\varphi = d\eta$, but is probably not compactly supported.

Support of φ :



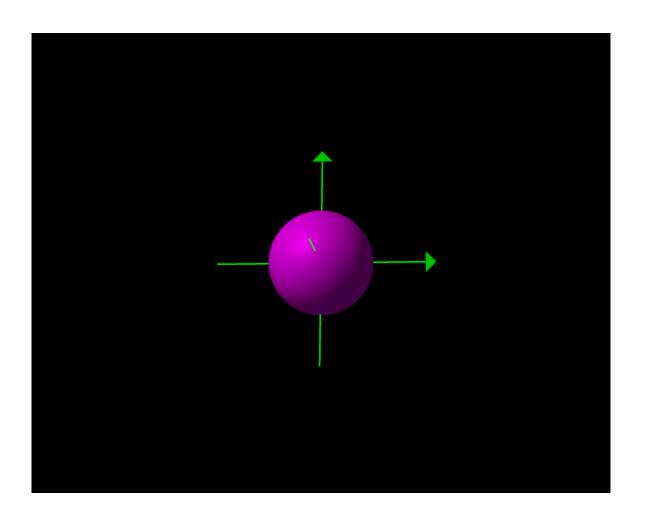
$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

Support of η :



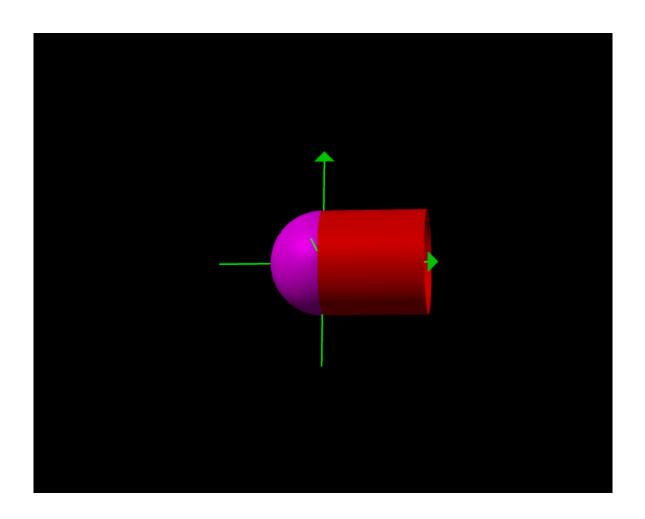
$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

Support of φ :



$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

Support of η :



$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported.

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L,

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$,

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

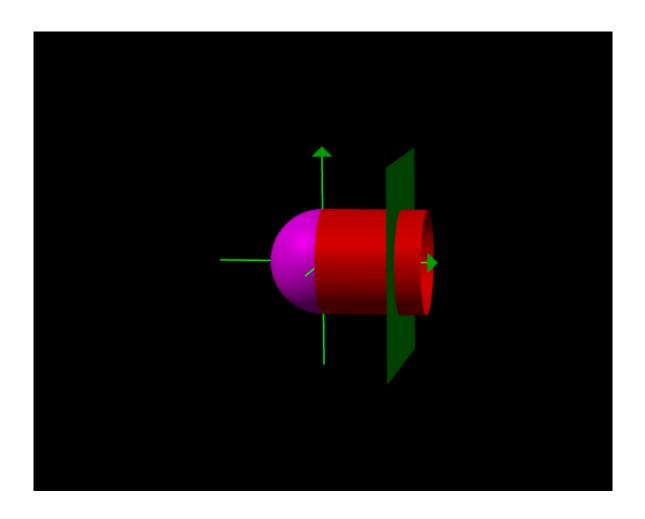
with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

Reduction to \mathbb{R}^{n-1} :



$$\zeta = \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

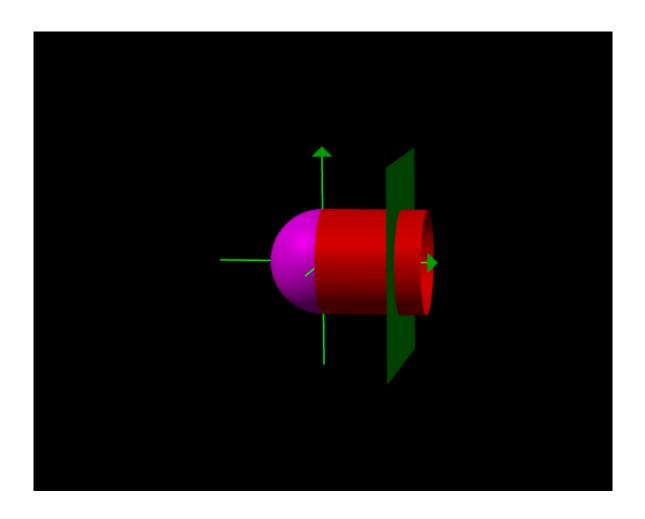
with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

Reduction to \mathbb{R}^{n-1} :



$$\zeta = \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\int_{\mathbb{R}^{n-1}} \zeta$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

$$\int_{\mathbb{R}^{n-1}} \zeta = \int \cdots \int_{-\infty}^{\infty} f |dx|^n$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\int_{\mathbb{R}^{n-1}} \zeta = \int \cdots \int_{-\infty}^{\infty} f |dx|^n = \int_{\mathbb{R}^n} \varphi$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

$$\int_{\mathbb{R}^{n-1}} \zeta = \int \cdots \int_{-\infty}^{\infty} f |dx|^n = \int_{\mathbb{R}^n} \varphi = 0$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$,

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis,

$$\zeta = d\psi$$
,

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis,

$$\zeta = d\psi, \qquad \exists \psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1}).$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$.

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$,

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi]$$

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

$$\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}$$

$$\phi(x) = \begin{cases} 0 & \text{when } x \ll 0, \\ 1 & \text{when } x \gg 0, \end{cases}$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi]$$

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

$$\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}$$

$$\phi(x) = \begin{cases} 0 & \text{when } x \ll 0, \\ 1 & \text{when } x \gg 0, \end{cases}$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi]$$

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi] \in \Omega_c^{n-1}(\mathbb{R}^n).$$

Notation:

$$\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$$
$$(x^1, x^2, \dots, x^n) \longmapsto (x^2, \dots, x^n)$$

$$\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}$$

$$\phi(x) = \begin{cases} 0 & \text{when } x \ll 0, \\ 1 & \text{when } x \gg 0, \end{cases}$$

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported *n*-form

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi] \in \Omega_c^{n-1}(\mathbb{R}^n).$$

Proof by induction. Assume true for \mathbb{R}^{n-1} , and let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be compactly supported *n*-form

$$\varphi = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

with $\int_{\mathbb{R}^n} \varphi = 0$. Now the (n-1)-form

$$\eta = \left[\int_{-\infty}^{x^1} f(\mathbf{t}, x^2, \dots, x^n) d\mathbf{t} \right] dx^2 \wedge \dots \wedge dx^n$$

certainly satisfies $\varphi = d\eta$, but is probably not compactly supported. However, when $x^1 > L$, for some large L, $\eta = \pi^* \zeta$, where

$$\zeta := \left[\int_{-\infty}^{\infty} f(t, x^2, \dots, x^n) dt \right] dx^2 \wedge \dots \wedge dx^n$$

belongs to $\Omega_c^{n-1}(\mathbb{R}^{n-1})$. But $\int_{\mathbb{R}^{n-1}} \zeta = 0$, so, by inductive hypothesis, $\zeta = d\psi$, $\psi \in \Omega_c^{n-2}(\mathbb{R}^{n-1})$. Hence $\varphi = d\xi$, where

$$\xi = \eta - d[\phi(x^1)\pi^*\psi] \in \Omega_c^{n-1}(\mathbb{R}^n).$$
 QED

Proposition. Let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be a compactly supported n-form with

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$.

Proposition. Let $\varphi \in \Omega_c^n(\mathbb{R}^n)$ be a compactly supported n-form with

$$\int_{\mathbb{R}^n} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(\mathbb{R}^n)$.

Using this, we now prove a major generalization...

Proposition. Let M^n be a connected, oriented n-manifold (without boundary),

Proposition. Let M^n be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_c^n(M)$ be a compactly supported n-form

Proposition. Let M^n be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_c^n(M)$ be a compactly supported n-form with

$$\int_{M} \varphi = 0.$$

Proposition. Let M^n be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega^n_c(M)$ be a compactly supported n-form with

$$\int_{M} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(M)$.

Proposition. Let M^n be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega^n_c(M)$ be a compactly supported n-form with

$$\int_{M} \varphi = 0.$$

Then

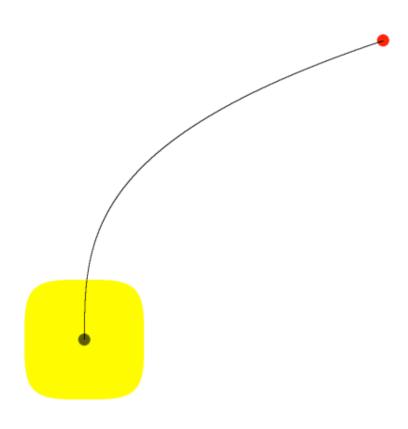
$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(M)$.

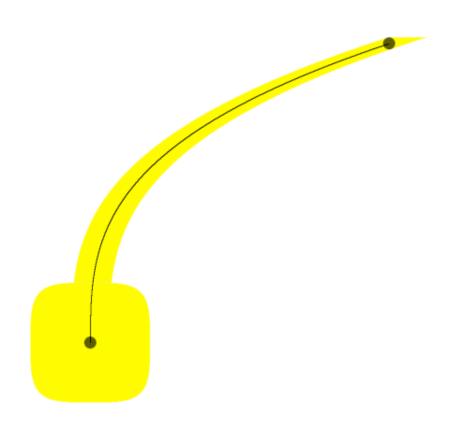
Now recall an application of flow of a vector field...

Lemma. Let M^n be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathcal{U} \approx \mathbb{R}^n$ such that $p, q \in \mathcal{U}$.

Lemma. Let M^n be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathcal{U} \approx \mathbb{R}^n$ such that $p, q \in \mathcal{U}$.



Lemma. Let M^n be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathcal{U} \approx \mathbb{R}^n$ such that $p, q \in \mathcal{U}$.



Proposition. Let M^n be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega^n_c(M)$ be a compactly supported n-form with

$$\int_{M} \varphi = 0.$$

Then

$$\varphi = d\psi$$

for some compactly supported form $\psi \in \Omega_c^{n-1}(M)$.

Proof. Choose some base-point $p \in M$.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathcal{U}_{\alpha} \approx \mathbb{R}^n$ such that $p \in \mathcal{U}_{\alpha}$ $\forall \alpha$.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathcal{U}_{\alpha} \approx \mathbb{R}^n$ such that $p \in \mathcal{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X = \text{supp } \varphi$ by a finite collection $\mathcal{U}_1, \ldots \mathcal{U}_{\ell}$ of these.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathcal{U}_{\alpha} \approx \mathbb{R}^n$ such that $p \in \mathcal{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X = \text{supp } \varphi$ by a finite collection $\mathcal{U}_1, \ldots, \mathcal{U}_{\ell}$ of these. Choose a partition of unity $f_0, f_1, \ldots, f_{\ell}$ subordinate to the cover $(M - X), \mathcal{U}_1, \ldots, \mathcal{U}_{\ell}$ of M, and set

$$\varphi_j = f_j \varphi, \quad j = 1, \dots, \ell.$$

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathcal{U}_{\alpha} \approx \mathbb{R}^n$ such that $p \in \mathcal{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X = \text{supp } \varphi$ by a finite collection $\mathcal{U}_1, \ldots, \mathcal{U}_{\ell}$ of these. Choose a partition of unity $f_0, f_1, \ldots, f_{\ell}$ subordinate to the cover $(M - X), \mathcal{U}_1, \ldots, \mathcal{U}_{\ell}$ of M, and set

$$\varphi_j = f_j \varphi, \quad j = 1, \dots, \ell.$$

Then each n-forms φ_j is then compactly supported in \mathcal{U}_j , and

$$\varphi = \varphi_1 + \cdots + \varphi_\ell$$
.

Now set $\mathscr{V} := \bigcap_{j=1}^{\ell} \mathscr{U}_j$.

Now set $\mathscr{V} := \bigcap_{j=1}^{\ell} \mathscr{U}_j$. Since, by construction, $p \in \mathscr{U}_j$ for all j, it follows that $\mathscr{V} \neq \varnothing$.

Now set $\mathscr{V} := \bigcap_{j=1}^{\ell} \mathscr{U}_j$. Since, by construction, $p \in \mathscr{U}_j$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_c^n(\mathscr{V})$ with $\int_{\mathscr{V}} \omega = 1$.

$$\widehat{\varphi}_j := \varphi_j - \kappa_j \omega,$$

$$\widehat{\varphi}_j := \varphi_j - \kappa_j \omega,$$

where $\kappa_j := \int_M \varphi_j$,

$$\widehat{\varphi}_j := \varphi_j - \kappa_j \omega,$$

where $\kappa_j := \int_{M} \varphi_j$, then $\widehat{\varphi}_j$ is supported in \mathscr{U}_j ,

$$\widehat{\varphi}_j := \varphi_j - \kappa_j \omega,$$

where $\kappa_j := \int_{M} \varphi_j$, then $\widehat{\varphi}_j$ is supported in \mathcal{U}_j , and satisfies

$$\int_{\mathcal{U}_j} \widehat{\varphi}_j = \int_{\mathbf{M}} \widehat{\varphi}_j = 0.$$

$$\sum_{j=1}^{\ell} \kappa_j$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{M} \varphi_j = \int_{M} \sum_{j=1}^{\ell} \varphi_j = \int_{M} \varphi$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption.

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption. Thus

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption. Thus

$$\sum_{j=1}^{\ell} \widehat{\varphi}_j = \sum_{j=1}^{\ell} (\varphi_j - \kappa_j \omega)$$

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption. Thus

$$\sum_{j=1}^{\ell} \widehat{\varphi}_j = \sum_{j=1}^{\ell} (\varphi_j - \kappa_j \omega)$$

$$= \sum_{j=1}^{\ell} \varphi_j - \left(\sum_{j=1}^{\ell} \kappa_j\right) \omega$$

Now observe that

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption. Thus

$$\sum_{j=1}^{\ell} \widehat{\varphi}_{j} = \sum_{j=1}^{\ell} (\varphi_{j} - \kappa_{j} \omega)$$

$$= \sum_{j=1}^{\ell} \varphi_{j} - \left(\sum_{j=1}^{\ell} \kappa_{j}\right) \omega$$

$$= \sum_{j=1}^{\ell} \varphi_{j}$$

$$= \sum_{j=1}^{\ell} \varphi_{j}$$

Now observe that

$$\sum_{j=1}^{\ell} \kappa_j = \sum_{j=1}^{\ell} \int_{\mathbf{M}} \varphi_j = \int_{\mathbf{M}} \sum_{j=1}^{\ell} \varphi_j = \int_{\mathbf{M}} \varphi = 0$$

by assumption. Thus

Imporon. Thus
$$\sum_{j=1}^{\ell} \widehat{\varphi}_j = \sum_{j=1}^{\ell} (\varphi_j - \kappa_j \omega)$$

$$= \sum_{j=1}^{\ell} \varphi_j - \left(\sum_{j=1}^{\ell} \kappa_j\right) \omega$$

$$= \sum_{j=1}^{\ell} \varphi_j = \varphi.$$

$$\widehat{\varphi}_j = d\eta_j$$

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$.

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero,

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M.

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M. It thus follows that

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M. It thus follows that

$$arphi = \sum_{j} \widehat{arphi}_{j} = \sum_{j} \left(d \eta_{j} \right) = d \left(\sum_{j} \eta_{j} \right) = d \eta$$

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M. It thus follows that

$$arphi = \sum_{j} \widehat{arphi}_{j} = \sum_{j} \left(d \eta_{j} \right) = d \left(\sum_{j} \eta_{j} \right) = d \eta$$

where $\eta \in \Omega_c^{n-1}(M)$.

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M. It thus follows that

$$\varphi = \sum_{j} \widehat{\varphi}_{j} = \sum_{j} (d\eta_{j}) = d \left(\sum_{j} \eta_{j} \right) = d\eta$$
where $\eta \in \Omega_{c}^{n-1}(M)$. QED

$$\widehat{\varphi}_j = d\eta_j$$

for some $\eta_j \in \Omega_c^{n-1}(\mathcal{U}_j)$, since $H_c^n(\mathbb{R}^n) = \mathbb{R}$. Now extend the compactly supported form η_j to M by zero, and notice that the finite sum

$$\eta := \sum_j \eta_j$$

is then a compactly supported (n-1)-form on M. It thus follows that

$$\varphi = \sum_{j} \widehat{\varphi}_{j} = \sum_{j} (d\eta_{j}) = d \left(\sum_{j} \eta_{j} \right) = d\eta$$

where $\eta \in \Omega_c^{n-1}(M)$.

QED

This now implies...

Theorem. If M^n is a connected, oriented smooth n-manifold (without boundary), then $H_c^n(M^n) \cong \mathbb{R}$,

Theorem. If M^n is a connected, oriented smooth n-manifold (without boundary), then

$$H_c^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

Theorem. If M^n is a connected, oriented smooth n-manifold (without boundary), then

$$H_c^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

Specializing to the compact case, we thus have...

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then $H^n(M^n) \cong \mathbb{R},$

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

Theorem. If M^n is a smooth compact, connected, oriented n-manifold (without boundary), then

$$H^n(M^n) \cong \mathbb{R},$$

where the isomorphism is given by

$$[\varphi] \longmapsto \int_{M} \varphi.$$

By contrast...

$$H^n(M^n) = 0.$$

$$H^n(M^n) = 0.$$

To see this, first recall...

Let $\varpi: M \to M$ be the oriented double cover.

Let $\varpi : \widetilde{M} \to M$ be the oriented double cover.

Let $\Phi: \widetilde{M} \to \widetilde{M}$ be interchange of two sheets.

Let $\varpi: M \to M$ be the oriented double cover.

Let $\Phi: M \to M$ be interchange of two sheets.

Then Φ reverses orientation of M,

Let $\varpi: M \to M$ be the oriented double cover.

Let $\Phi: \widetilde{M} \to \widetilde{M}$ be interchange of two sheets.

Then Φ reverses orientation of M, and

$$\Phi^2 = identity.$$

$$H^n(M^n) = 0.$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since M compact, connected, $\Longrightarrow \varpi^* \varphi$ exact:

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since M compact, connected, $\Longrightarrow \varpi^* \varphi$ exact:

$$\varpi^*\varphi = d\psi, \quad \exists \psi \in \Omega^{n-1}(\widetilde{M}).$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since \widetilde{M} compact, connected, $\Longrightarrow \varpi^* \varphi = d\psi$.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since \widetilde{M} compact, connected, $\Longrightarrow \varpi^* \varphi = d\psi$.

$$\therefore \ \varpi^*\varphi = \Phi^*\varpi^*\varphi = \Phi^*d\psi = d\Phi^*\psi.$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since \widetilde{M} compact, connected, $\Longrightarrow \varpi^* \varphi = d\psi$, $\varpi^* \varphi = d\Phi^* \psi$.

$$\therefore \quad \varpi^* \varphi = d \left(\frac{\psi + \Phi^* \psi}{2} \right) = \Phi^* d \check{\psi}$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Example. Suppose M compact, non-orientable.

If φ an *n*-form on M, then

$$\int_{\widetilde{M}} \varpi^* \varphi = 0.$$

Since M compact, connected, $\Longrightarrow \varpi^* \varphi = d\psi$, $\varpi^* \varphi = d\Phi^* \psi$.

$$\therefore \quad \varpi^* \varphi = d \left(\frac{\psi + \Phi^* \psi}{2} \right) = \Phi^* d \check{\psi}$$

$$\therefore \varphi = d\check{\psi}.$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Same trick used in non-compact case...

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

$$\varphi = \sum_{j=1}^{\infty} \varphi_j$$

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

$$\varphi = \sum_{j=1}^{\infty} \varphi_j$$

where all φ_j compactly supported, with $\int \varphi_j = 0$.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

$$\varphi = \sum_{j=1}^{\infty} \varphi_j$$

where all φ_j compactly supported, with $\int \varphi_j = 0$. Thus $\varphi = d(\sum \eta_j)$, where sum is locally finite.

$$H^n(M^n) = 0.$$

That is, any n-form on M is exact.

Idea. First show in oriented case.

Show any n-form locally finite sum

$$\varphi = \sum_{j=1}^{\infty} \varphi_j$$

where all φ_j compactly supported, with $\int \varphi_j = 0$.

Thus $\varphi = d(\sum \eta_i)$, where sum is locally finite.

Deduce non-orientable case by our double-cover trick.