MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

April 9, 2020

Let V be a real, finite-dimensional vector space.

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

```
\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.
```

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

$$\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.$$

Proposition. V^* is finite-dimensional vector space, too, and

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

$$\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.$$

Proposition. \mathbb{V}^* is finite-dimensional vector space, too, and

$$\dim \mathbb{V}^* = \dim \mathbb{V}.$$

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

$$\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.$$

Proposition. \mathbb{V}^* is finite-dimensional vector space, too, and

$$\dim \mathbb{V}^* = \dim \mathbb{V}.$$

In particular, $\mathbb{V}^* \cong \mathbb{V}$ as vector spaces.

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

$$\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.$$

Proposition. \mathbb{V}^* is finite-dimensional vector space, too, and

$$\dim \mathbb{V}^* = \dim \mathbb{V}.$$

In particular, $\mathbb{V}^* \cong \mathbb{V}$ as vector spaces.

But there is no natural, preferred isomorphism!

Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be

$$\mathbb{V}^* := \{ \text{Linear maps } \mathbb{V} \to \mathbb{R} \}.$$

Proposition. \mathbb{V}^* is finite-dimensional vector space, too, and

$$\dim \mathbb{V}^* = \dim \mathbb{V}.$$

In particular, $\mathbb{V}^* \cong \mathbb{V}$ as vector spaces.

But there is no natural, preferred isomorphism!

Let's not confuse one twin for the other!

In fact, ∃ contravariant functor from

```
In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps})
```

```
In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps}) to itself, given by \mathbb{V} \leadsto \mathbb{V}^*.
```

```
In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps}) to itself, given by \mathbb{V} \leadsto \mathbb{V}^*.
Namely, if A: \mathbb{V} \to \mathbb{W} any linear map,
```

```
In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps}) to itself, given by \mathbb{V} \leadsto \mathbb{V}^*.

Namely, if A: \mathbb{V} \to \mathbb{W} any linear map,
\exists adjoint map A^*: \mathbb{W}^* \to \mathbb{V}^*, defined by
```

In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself, given by $\mathbb{V} \leadsto \mathbb{V}^*$.

Namely, if $A : \mathbb{V} \to \mathbb{W}$ any linear map, \exists adjoint map $A^* : \mathbb{W}^* \to \mathbb{V}^*$, defined by $(A^*\varphi)(\mathsf{v}) = \varphi(A(\mathsf{v})).$

In fact, \exists contravariant functor from category ({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself, given by $\mathbb{V} \leadsto \mathbb{V}^*$.

Namely, if $A : \mathbb{V} \to \mathbb{W}$ any linear map, $\exists \text{ adjoint map } A^* : \mathbb{W}^* \to \mathbb{V}^*, \text{ defined by}$ $(A^*\varphi)(\mathsf{v}) = \varphi(A(\mathsf{v})).$

$$\mathbb{V} \xrightarrow{A} \mathbb{W}$$

In fact, ∃ contravariant functor from category ({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself, given by $\mathbb{V} \leadsto \mathbb{V}^*$. Namely, if $A: \mathbb{V} \to \mathbb{W}$ any linear map, \exists adjoint map $A^*: \mathbb{W}^* \to \mathbb{V}^*$, defined by $(A^*\varphi)(\mathbf{v}) = \varphi(A(\mathbf{v})).$ $\mathbb{V}^* \stackrel{A^*}{\longleftarrow} \mathbb{W}^*$ $\mathbb{V} \xrightarrow{A} \mathbb{W}$

$$\mathbb{V} = \left\{ \begin{array}{c} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

$$\mathbb{V} = \left\{ \begin{array}{c} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

Then $\mathbb{V}^* \cong \mathbb{R}^n$ can be identified with the set of row vectors of length n

$$\mathbb{V} = \left\{ \begin{array}{c} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

Then $\mathbb{V}^* \cong \mathbb{R}^n$ can be identified with the set of row vectors of length n

$$\mathbb{V}^* = \left\{ \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix} \right\}$$

$$\mathbb{V} = \left\{ \begin{array}{c} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

Then $\mathbb{V}^* \cong \mathbb{R}^n$ can be identified with the set of row vectors of length n

$$\mathbb{V}^* = \left\{ \left[b_1 \ b_2 \cdots b_n \right] \right\}$$

because any linear map $\mathbb{V} \to \mathbb{R}$ takes the form

$$\mathbb{V} = \left\{ \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

Then $\mathbb{V}^* \cong \mathbb{R}^n$ can be identified with the set of row vectors of length n

$$\mathbb{V}^* = \left\{ \left[b_1 \ b_2 \cdots b_n \right] \right\}$$

because any linear map $\mathbb{V} \to \mathbb{R}$ takes the form

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

$$\mathbb{V} = \left\{ \begin{array}{c} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \right\}$$

Then $\mathbb{V}^* \cong \mathbb{R}^n$ can be identified with the set of row vectors of length n

$$\mathbb{V}^* = \left\{ \left[b_1 \ b_2 \cdots b_n \right] \right\}$$

because any linear map $\mathbb{V} \to \mathbb{R}$ takes the form

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \quad \exists !\vec{b}.$$

Example. If $\mathbb{V} \cong \mathbb{R}^n$, $\mathbb{W} \cong \mathbb{R}^m$, and $A : \mathbb{V} \to \mathbb{W}$

Example. If $\mathbb{V} \cong \mathbb{R}^n$, $\mathbb{W} \cong \mathbb{R}^m$, and $A : \mathbb{V} \to \mathbb{W}$

$$A: \mathbb{V} \to \mathbb{W}$$

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

$$A: \mathbb{V} \to \mathbb{W}$$

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

$$A: \mathbb{V} \to \mathbb{W}$$

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

$$A: \mathbb{V} \to \mathbb{W}$$

given by left-multiplication

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

then

$$A^*: \mathbb{W}^* \to \mathbb{V}^*$$

$$A: \mathbb{V} \to \mathbb{W}$$

given by left-multiplication

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

then

$$A^*: \mathbb{W}^* \to \mathbb{V}^*$$

given by right-multiplication

$$A: \mathbb{V} \to \mathbb{W}$$

given by left-multiplication

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

then

$$A^*: \mathbb{W}^* \to \mathbb{V}^*$$

given by right-multiplication

$$\begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix} \longmapsto \begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix} \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

$$A: \mathbb{V} \to \mathbb{W}$$

given by left-multiplication

$$\begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix} \longmapsto \mathbf{A} \begin{bmatrix} a^1 \\ a^2 \\ \vdots \\ a^n \end{bmatrix}$$

then

$$A^*: \mathbb{W}^* \to \mathbb{V}^*$$

given by right-multiplication

$$\begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix} \longmapsto \begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix}$$

Example. If we "artificially" identify column vectors with row vectors

$$\begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix}^t = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

then the action of A^* becomes

$$\left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight] \mapsto \left[egin{array}{ccc} A_{11} & \cdots & A_{m1} \ dots & & dots \ A_{1n} & \cdots & A_{mn} \end{array}
ight] \left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

so adjoint A^* sometimes called transpose of A.

Example. If we "artificially" identify column vectors with row vectors

$$\begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix}^t = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

then the action of A^* becomes

$$egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix} \mapsto egin{bmatrix} oldsymbol{A^t} \ b_2 \ dots \ b_m \end{bmatrix}$$

so adjoint A^* sometimes called transpose of A.

($\{\text{vector spaces over } \mathbb{R}\}, \{\mathbb{R}\text{-linear maps}\}$)

to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

If $A: \mathbb{V} \to \mathbb{W}$ any linear map,

 \exists adjoint map $A^*: \mathbb{W}^* \to \mathbb{V}^*$, defined by

$$(A^*\varphi)(\mathsf{v}) = \varphi(A(\mathsf{v})).$$

$$\mathbb{V}^* \stackrel{A^*}{\longleftarrow} \mathbb{W}^*$$

$$\mathbb{V} \xrightarrow{A} \mathbb{W}$$

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

$$\mathbf{I}^* = \mathbf{I}$$
.

$$\mathbb{V}^* \xleftarrow{\mathbf{I}} \mathbb{V}^*$$

$$\mathbb{V} \stackrel{\mathbf{I}}{\longrightarrow} \mathbb{V}$$

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

$$(B \circ A)^* = A^* \circ B^*$$

$$\mathbb{U} \stackrel{A^*}{\longleftarrow} \mathbb{V}^* \stackrel{B^*}{\longleftarrow} \mathbb{W}^*$$

$$\mathbb{U} \xrightarrow{A} \mathbb{V} \xrightarrow{B} \mathbb{W}$$

```
\exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps}) to itself given by \mathbb{V} \leadsto \mathbb{V}^*.
```

```
\exists contravariant functor from category ({vector spaces over \mathbb{R}}, {\mathbb{R}-linear maps}) to itself given by \mathbb{V} \leadsto \mathbb{V}^*.
But \mathbb{V} and \mathbb{V}^* are genuinely different,
```

\exists contravariant functor from category ({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

But V and V^* are genuinely different, because this relationship reverses the direction of arrows!

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

But V and V^* are genuinely different, because this relationship reverses the direction of arrows!

By contrast, there is a natural isomorphism

$$(\mathbb{V}^*)^* = \mathbb{V}$$

which we usually take for granted.

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

But V and V^* are genuinely different, because this relationship reverses the direction of arrows!

By contrast, there is a natural isomorphism

$$\mathbb{V}^{**} = \mathbb{V}$$

which we usually take for granted.

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

But V and V^* are genuinely different, because this relationship reverses the direction of arrows!

By contrast, there is a natural isomorphism

$$\mathbb{V}^{**} = \mathbb{V}$$

which we usually take for granted.

So V and V^* are like mirror images.

({vector spaces over \mathbb{R} }, { \mathbb{R} -linear maps}) to itself given by $\mathbb{V} \leadsto \mathbb{V}^*$.

But V and V^* are genuinely different, because this relationship reverses the direction of arrows!

By contrast, there is a natural isomorphism

$$\mathbb{V}^{**} = \mathbb{V}$$

which we usually take for granted.

So \mathbb{V} and \mathbb{V}^* are like mirror images.

Or mirror twins!

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

What does a covector look like?

cotangent vector

cotangent vector

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

What does a covector look like?

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

What does a covector look like?

Hyperplane in T_pM that misses the origin.

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

What does a covector look like?

Hyperplane in T_pM that misses the origin.

Zero covector $\leftrightarrow \varnothing$:

$$T_p^*M = \text{Hom } (T_pM, \mathbb{R}),$$

called the cotangent space of M at p.

Elements $\varphi \in T_p^*M$ are called covectors.

What does a covector look like?

Hyperplane in T_pM that misses the origin.

Zero covector $\leftrightarrow \varnothing$: "hyperplane at infinity."

If
$$f \in C^{\infty}(M)$$
,

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to T_{f(p)}\mathbb{R}$$

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p:T_pM\to\mathbb{R}$$

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$.

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$.

Simplifying notation, we'll write

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$.

Simplifying notation, we'll write

$$(df)(p) \in T_p^*M$$

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$. Simplifying notation, we'll write

$$(df)(p) \in T_p^*M$$

or even

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$.

Simplifying notation, we'll write

$$(df)(p) \in T_p^*M$$

or even

$$df \in T_p^*M$$

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $(df)_p \in T_p^*M$. Simplifying notation, we'll write

$$(df)(p) \in T_p^*M$$

or even

$$df \in T_p^*M$$

when p is clear from context.

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $df \in T_p^*M$.

If
$$f \in C^{\infty}(M)$$
,

$$(df)_p: T_pM \to \mathbb{R}$$

So, thought of in this way, $df \in T_p^*M$.

Thus, for $v \in T_pM$, we have

$$(df)(v) := vf.$$

$$dx^1, \dots, dx^n \in T_p^*M$$

provide a basis for T_p^*M .

Exactly dual basis of coordinate basis for T_pM :

$$(dx^{j})\left(\frac{\partial}{\partial x^{k}}\right) = \delta_{k}^{j} = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

$$dx^1, \dots, dx^n \in T_p^*M$$

provide a basis for T_p^*M .

$$dx^1, \dots, dx^n \in T_p^*M$$

provide a basis for T_p^*M .

In particular, df is linear combination of dx^{j} :

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n$$

$$dx^1, \dots, dx^n \in T_p^*M$$

provide a basis for T_p^*M .

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

Then \mathscr{I}_p^2 is the ideal generated by products f_1f_2 , where $f_1, f_2 \in \mathscr{I}_p$.

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

Then \mathscr{I}_{p}^{2} is the ideal generated by products $f_{1}f_{2}$, where $f_{1}, f_{2} \in \mathscr{I}_{p}$.

Proposition. There is a natural isomorphism

$$\mathscr{I}_p/\mathscr{I}_p^2 = T_p^*M.$$

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

Then \mathscr{I}_{p}^{2} is the ideal generated by products $f_{1}f_{2}$, where $f_{1}, f_{2} \in \mathscr{I}_{p}$.

Proposition. There is a natural isomorphism

$$\mathscr{I}_p/\mathscr{I}_p^2 = T_p^*M.$$

In fact, the isomorphism is

$$\mathscr{I}_p/\mathscr{I}_p^2 \ni [f] \longmapsto (df)_p \in T_p^*M.$$

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

Then \mathscr{I}_p^2 is the ideal generated by products f_1f_2 , where $f_1, f_2 \in \mathscr{I}_p$.

Proposition. There is a natural isomorphism

$$\mathscr{I}_p/\mathscr{I}_p^2 = T_p^*M.$$

In fact, the isomorphism is

$$\mathscr{I}_p/\mathscr{I}_p^2 \ni [f] \longmapsto (df)_p \in T_p^*M.$$

Why? Taylor expansion allows one to prove that

$$\{f \in C^{\infty}(M) \mid f(p) = 0\}.$$

Then \mathscr{I}_p^2 is the ideal generated by products f_1f_2 , where $f_1, f_2 \in \mathscr{I}_p$.

Proposition. There is a natural isomorphism

$$\mathscr{I}_p/\mathscr{I}_p^2 = T_p^*M.$$

In fact, the isomorphism is

$$\mathscr{I}_p/\mathscr{I}_p^2 \ni [f] \longmapsto (df)_p \in T_p^*M.$$

Why? Taylor expansion allows one to prove that

$$\mathscr{I}_{p}^{2} = \{ f \in C^{\infty}(M) \mid f(p) = 0, (df)_{p} = 0 \}.$$

$$T^*M = \coprod_{p \in M} T_p^*M$$

$$T^*M = \coprod_{p \in M} T_p^*M$$

can be made into a rank n vector bundle

$$T^*M = \coprod_{p \in M} T_p^*M$$

can be made into a rank n vector bundle over M^n .

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$,

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$,

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$, and such that the diagram

$$\varpi^{-1}(U) \stackrel{\approx}{\to} U \times \mathbb{R}^k$$

$$U$$

$$U$$

commutes.

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$, and such that the diagram

$$\varpi^{-1}(U) \stackrel{\approx}{\to} U \times \mathbb{R}^k$$

$$U$$

$$U$$

commutes.

$$T^*M = \coprod_{p \in M} T_p^*M$$

can be made into a rank n vector bundle over M^n .

$$T^*M = \coprod_{p \in M} T_p^*M$$

can be made into a rank n vector bundle over M^n .

Key observation. If (x^1, \ldots, x^n) are coordinates on an open set $U \subset M$, then

$$T^*U \cong U \times \mathbb{R}^n$$

by using dx^1, \ldots, dx^n as basis for $T_p^*M, \forall p \in U$.

Can build any smooth vector bundle as follows:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices}\}.$

Transition functions.

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices} \}.$

3. Set

$$E = \left[\bigcup_{\alpha} (U_{\alpha} \times \mathbb{R}^k) \right] / \sim$$

Transition functions.

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices} \}.$

3. Set

$$E = \left[\bigcup_{\alpha} (U_{\alpha} \times \mathbb{R}^k)\right] / \sim$$

$$U_{\beta} \times \mathbb{R}^k \ni (p, \mathbf{v}) \sim (p, \tau_{\alpha\beta}(p)\mathbf{v}) \in U_{\alpha} \times \mathbb{R}^k \quad \forall p \in U_{\alpha} \cap U_{\beta}.$$

If (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are two smooth local coordinate systems, then, using the Einstein summation convention,

If (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are two smooth local coordinate systems, then, using the Einstein summation convention,

$$dy^{j} = \frac{\partial y^{j}}{\partial x^{k}} dx^{k}.$$

If (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are two smooth local coordinate systems, then, using the Einstein summation convention,

$$dy^{j} = \frac{\partial y^{j}}{\partial x^{k}} dx^{k}.$$

Thus the transformation from components in the dy basis to components in the dx basis is the transpose of the Jacobian matrix \mathcal{J} :

If (x^1, \ldots, x^n) and (y^1, \ldots, y^n) are two smooth local coordinate systems, then, using the Einstein summation convention,

$$dy^{j} = \frac{\partial y^{j}}{\partial x^{k}} dx^{k}.$$

Thus the transformation from components in the dy basis to components in the dx basis is the transpose of the Jacobian matrix \mathcal{J} :

$$\begin{bmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^1} \\ \vdots & & \vdots \\ \frac{\partial y^1}{\partial x^n} & \cdots & \frac{\partial y^n}{\partial x^n} \end{bmatrix} = \mathcal{J}^t$$

$$\left(\begin{array}{c} \begin{array}{c} \\ \end{array} \right)^{-1} = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^1} \\ \vdots & & \vdots \\ \frac{\partial y^1}{\partial x^n} & \cdots & \frac{\partial y^n}{\partial x^n} \end{bmatrix}^{-1}$$

By contrast, for the tangent bundle TM, passing from the x-coordinate basis to the y-coordinate basis would instead just be accomplished by the Jacobian matrix:

$$\left(\begin{array}{c} \begin{array}{c} \\ \end{array} \right)^{-1} = \begin{bmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^1} \\ \vdots & & \vdots \\ \frac{\partial y^1}{\partial x^n} & \cdots & \frac{\partial y^n}{\partial x^n} \end{bmatrix}^{-1}$$

By contrast, for the tangent bundle TM, passing from the x-coordinate basis to the y-coordinate basis would instead just be accomplished by the Jacobian matrix:

$$= \begin{bmatrix} \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\ \vdots & & \vdots \\ \frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n} \end{bmatrix}$$

Thus, if

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(n, \mathbb{R})$$

is the system of transition functions used to build TM from a coordinate atlas for M^n , and if

$$\tilde{\tau}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(n, \mathbb{R})$$

is the system of transition functions used to build T^*M , then one system is obtained from the other by taking the transpose-inverses:

$$\tilde{\tau}_{\alpha\beta} = \left[\left(\tau_{\alpha\beta} \right)^t \right]^{-1}$$
.