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Dual of a vector space:
Let V be a real, finite-dimensional vector space.

Then the dual vector space of V is defined to be
V* := {Linear maps V — R}.

Proposition. V* is finite-dimensional vector space,
too, and

dimV* = dimV.
In particular, V* = V as vector spaces.

But there is no natural, preferred isomorphism!

Let’s not confuse one twin for the other!



In fact, 4 contravariant functor from



In fact, 4 contravariant functor from category

({vector spaces over R}, {R-linear maps})



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,
Namely, if A:V — W any linear map,



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,

Namely, if A:V — W any linear map,

3 adjoint map A* : W* — V* defined by



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,

Namely, if A:V — W any linear map,

3 adjoint map A* : W* — V* defined by

(A7) (v) = @(A(v)).



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,

Namely, if A:V — W any linear map,

3 adjoint map A* : W* — V* defined by

(A7) (v) = @(A(v)).



In fact, 4 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself, given by V ~» V*,

Namely, if A:V — W any linear map,

3 adjoint map A* : W* — V* defined by

(A7) (v) = @(A(v)).
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Example. Let V = R" be the set
of column vectors of length n:

_&1_

a’

V p—
a.”

Then V* = R"™ can be identified with the set
of row vectors of length n

VE={ [br b2 bl }

because any linear map V — R takes the form

-1 -1
2 2 .
= bbb | 315,
a’ a.n
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3 contravariant functor from category
({vector spaces over R}, {R-linear maps})

to itself given by V ~» V¥,

But V and V* are genuinely different, because

this relationship reverses the direction of arrows!

By contrast, there is a natural isomorphism

AU

which we usually take for granted.

So V and V* are like mirror images.

Or mirror twins!
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Key Example. If M is a smooth n-manifold,
and p € M, the tangent space 1))\ has a dual
vector space

called the cotangent space of M at p.

Elements ¢ € T),*M are called covectors.

What does a covector look like?
Hyperplane in 75, M that misses the origin.

Zero covector <+ &: “hyperplane at infinity.”
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So, thought of in this way, (df), € T;M.

Simplifying notation, we’ll write

(df)(p) € T, M

oI evell
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when p is clear from context.
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Differential of a function:

If feC>®M),

df)p: TpM — R
So, thought of in this way, df € Ty M.

Thus, for v € T, M, we have

(df)(v) =uvf.
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Let .#), C C°°(M) be the ideal

{feC™WM)| f(p)=0}.
Then ij is the ideal generated by products f1fo,
where f1, fo € ).

Proposition. There is a natural isomorphism

In fact, the isomorphism is

o) I 3 [f] — (df)y € TyM

Why? Taylor expansion allows one to prove that

I72={f € C®(M) | flp) = 0,(df), = 0}.
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Cotangent Bundle.

* o *
T* M = H TrM
peM
can be made into a rank n vector bundle over M ™.

Key observation. If (z!,... 2") are
coordinates on an open set U C M, then

T°U =2 U x R"
by using dzt, ... dz™ as basis for TyM,VpeU.
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Transition functions.

Can build any smooth vector bundle as follows:

1. Cover M with open sets:
M — U U&
(87
2. Choose system of transition functions:

rog UaNUg <> GL(E, R)

with
Taf = Tgolé
TafTpyTya =L
Here GL(k, R) = {invertible real k x k matrices}.

3. Set

E=|JUaxRE)| [~

87

UgxR¥ 3 (p,v) ~ (p, Tap(p)v) € UaxRF  Wp € UanUsg.
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If (z!,...,2™) and (y',...,9") are two smooth
local coordinate systems, then, using the Einstein
sumimation convention,

83/9
Oxk

dyj da:'

Thus the transformation from components in the dy
basis to components in the da basis is the transpose
of the Jacobian matrix #£:

D21 9] /t
oyt oy
Oz ox™ |
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to the y—coordinate basis for 7™M is accomplished
by multiplying by the inverse transpose of the cor-
responding Jacobian matrix:

. 4 —1

1 oyl oy
(/t) Oxl Oxl
oyl oy

Oz ox™ _

By contrast, for the tangent bundle T'M ., passing
from the x-coordinate basis to the y—coordinate ba-
sis would instead just be accomplished by the Jaco-
bian matrix:
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Transition Functions for T];k M
Thus, it
Tag  UaNUp AN GL(n,R)

is the system of transition functions used to build
T'M from a coordinate atlas for M™, and if

Fog UaNU5 <> GL(n, R)
is the system of transition functions used to build

T* M, then one system is obtained from the other
by taking the transpose-inverses:

Taf = [(Taﬁ)t]_l-



