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Sections.

A section of w : ¥ — M is a (smooth) map

o.M —F
such that oo =idyy.

Thus 0 : M — FE is a right inverse of

w b — M
X/

Local section = section of restriction F|;; of
bundle to some open subset U C M.
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Example. Mobius strip.

Here vertical segment is open, represents all of RR.

Equivalent construction:

E=R%/ ~
where equivalence relation is
(z,y) ~ (& +4, (=1)y) VjeZ

Projection w : £ — R/Z given by |(z,y)] — |x].
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UgxRF 3 (p,v) ~ (p, Tap(p)v) € UaxRF  Wp € UanUsg.




