MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

April 7, 2020

A smooth rank-k vector bundle over M is

• a smooth (n + k)-manifold E;

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$,

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$,

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$, and such that the diagram

$$\varpi^{-1}(U) \stackrel{\approx}{\to} U \times \mathbb{R}^k$$

$$U$$

$$U$$

commutes.

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

$$\downarrow \varpi$$

$$\downarrow \varpi$$

$$M$$

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$, and such that the diagram

$$\varpi^{-1}(U) \stackrel{\approx}{\to} U \times \mathbb{R}^k$$

$$U$$

$$U$$

commutes.

 $\varpi:TM\to M$

is a smooth rank-n vector bundle over M.

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial if it is (globally) isomorphic to such a product,

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial if it is (globally) isomorphic to such a product, in the sense that there is a diffeomorphism $E \approx M \times \mathbb{R}^k$

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial if it is (globally) isomorphic to such a product, in the sense that there is a diffeomorphism $E \approx M \times \mathbb{R}^k$ that makes the diagram

commute,

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial if it is (globally) isomorphic to such a product, in the sense that there is a diffeomorphism $E \approx M \times \mathbb{R}^k$ that makes the diagram

commute, and is fiberwise linear.

A smooth rank-k vector bundle over M is

- a smooth (n + k)-manifold E;
- a smooth map $\varpi : E \to M$; and
- a real vector space structure on every "fiber"

$$E_p := \varpi^{-1}(p);$$

satisfying the local triviality condition:

 \bullet each $p \in M$ has a neighborhood U such that

$$\varpi^{-1}(U) \approx U \times \mathbb{R}^k$$

s.t. $\varpi^{-1}(q) \approx \{q\} \times \mathbb{R}^k$ is isomorphism of vector spaces $\forall q \in U$, and such that the diagram

$$\varpi^{-1}(U) \stackrel{\approx}{\to} U \times \mathbb{R}^k$$

$$U$$

$$U$$

commutes.

$$\varpi:TM\to M$$

is a smooth rank-n vector bundle over M.

Example. If M is a smooth n-manifold, then

$$M \times \mathbb{R}^k \to M$$

is a smooth rank-k vector bundle over M.

Definition. A vector bundle $\varpi : E \to M$ is said to be trivial if it is (globally) isomorphic to such a product, in the sense that there is a diffeomorphism $E \approx M \times \mathbb{R}^k$ that makes the diagram

commute, and is fiberwise linear.

A section of $\varpi: E \to M$

A section of $\varpi : E \to M$ is a (smooth) map

A section of $\varpi : E \to M$ is a (smooth) map

 $\sigma: M \to E$

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

$$\varpi: E \longrightarrow M$$

A section of $\varpi: E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

$$\varpi: E \longrightarrow M$$

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

Thus $\sigma: M \to E$ is a right inverse of

Example. Zero section: $\sigma(p) = \mathbf{0}_p \ \forall p$.

A section of $\varpi: E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

A section of $\varpi: E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

$$\varpi: E \longrightarrow M$$

A section of $\varpi : E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

Thus $\sigma: M \to E$ is a right inverse of

$$\varpi: E \longrightarrow M$$

Example. If E = TM, section = vector field.

A section of $\varpi: E \to M$ is a (smooth) map

$$\sigma: M \to E$$

such that $\varpi \circ \sigma = \mathrm{id}_M$.

Thus $\sigma: M \to E$ is a right inverse of

$$\varpi: E \longrightarrow M$$

Local section = section of restriction $E|_U$ of bundle to some open subset $U \subset M$.

Here vertical segment is open, represents all of \mathbb{R} .

Here vertical segment is open, represents all of \mathbb{R} .

Equivalent construction:

Here vertical segment is open, represents all of \mathbb{R} .

Equivalent construction:

$$E = \mathbb{R}^2 / \sim$$

Here vertical segment is open, represents all of \mathbb{R} .

Equivalent construction:

$$E = \mathbb{R}^2 / \sim$$

where equivalence relation is

Here vertical segment is open, represents all of \mathbb{R} .

Equivalent construction:

$$E = \mathbb{R}^2 / \sim$$

where equivalence relation is

$$(x,y) \sim (x+j,(-1)^j y) \quad \forall j \in \mathbb{Z}.$$

Here vertical segment is open, represents all of \mathbb{R} .

Equivalent construction:

$$E = \mathbb{R}^2 / \sim$$

where equivalence relation is

$$(x,y) \sim (x+j,(-1)^j y) \quad \forall j \in \mathbb{Z}.$$

Projection $\varpi: E \to \mathbb{R}/\mathbb{Z}$ given by $[(x,y)] \mapsto [x]$.

Can build any smooth vector bundle as follows:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices}\}.$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices} \}.$

3. Set

$$E = \left[\bigcup_{\alpha} (U_{\alpha} \times \mathbb{R}^k) \right] / \sim$$

Can build any smooth vector bundle as follows:

1. Cover M with open sets:

$$M = \bigcup_{\alpha} U_{\alpha}$$

2. Choose system of transition functions:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \xrightarrow{C^{\infty}} \mathbf{GL}(k, \mathbb{R})$$

with

$$\tau_{\alpha\beta} = \tau_{\beta\alpha}^{-1}$$
$$\tau_{\alpha\beta}\tau_{\beta\gamma}\tau_{\gamma\alpha} = \mathbf{I}.$$

Here $\mathbf{GL}(k, \mathbb{R}) = \{\text{invertible real } k \times k \text{ matrices} \}.$

3. Set

$$E = \left[\bigcup_{\alpha} (U_{\alpha} \times \mathbb{R}^k) \right] / \sim$$

$$U_{\beta} \times \mathbb{R}^k \ni (p, \mathbf{v}) \sim (p, \tau_{\alpha\beta}(p)\mathbf{v}) \in U_{\alpha} \times \mathbb{R}^k \quad \forall p \in U_{\alpha} \cap U_{\beta}.$$