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Hk(Rn) =

{
R if k = 0,

0 otherwise.
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∴ If ϕ ∈ Ωn(M) has
∫
M ϕ 6= 0, then ϕ 6= dη.
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Compactly supported de Rham complex:
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Hk
c (M) :=

ker d : Ωkc (M)→ Ωk+1
c (M)

Image d : Ωk−1
c (M)→ Ωkc (M)

But qualitatively different from Hk(M)!
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supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).
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Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).

Using this, we now prove a major generalization. . .

173



Proposition. Let Mn be a connected, oriented
n-manifold (without boundary), and let ϕ ∈ Ωnc (M)
be a compactly supported n-form with

174



Proposition. Let Mn be a connected, oriented
n-manifold (without boundary), and let ϕ ∈ Ωnc (M)
be a compactly supported n-form with

175



Proposition. Let Mn be a connected, oriented
n-manifold (without boundary), and let ϕ ∈ Ωnc (M)
be a compactly supported n-form with∫

M
ϕ = 0.

176



Proposition. Let Mn be a connected, oriented
n-manifold (without boundary), and let ϕ ∈ Ωnc (M)
be a compactly supported n-form with∫

M
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (M).

177



Proposition. Let Mn be a connected, oriented
n-manifold (without boundary), and let ϕ ∈ Ωnc (M)
be a compactly supported n-form with∫

M
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (M).

Now recall an application of flow of a vector field. . .
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coordinate domains U α ≈ Rn such that p ∈ U α

∀α. Since ϕ is compactly supported, we can then
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subordinate to the cover (M − X),U 1, . . .U ` of
M , and set

ϕj = f jϕ, j = 1, . . . , `.

Then each n-forms ϕj is then compactly supported
in U j, and

ϕ = ϕ1 + · · · + ϕ`.
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Theorem. If Mn is a connected, oriented smooth
n-manifold (without boundary), then

Hn
c (Mn) ∼= R,
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Theorem. If Mn is a connected, oriented smooth
n-manifold (without boundary), then

Hn
c (Mn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
M
ϕ.

Specializing to the compact case, we thus have. . .
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Theorem. If Mn is a smooth compact, connected,
oriented n-manifold (without boundary), then

Hn(Mn) ∼= R,
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Theorem. If Mn is a smooth compact, connected,
oriented n-manifold (without boundary), then

Hn(Mn) ∼= R,
where the isomorphism is given by

[ϕ] 7−→
∫
M
ϕ.
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