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Closed Forms. A differential form ¢ € QF(M)
1s said to be closed if

do = 0.

In other words
{closed k-forms on M} = ker [d - QF (M) — QkH(M)} .

Exact Forms. A differential form ¢ € QF(M) is
said to be exact it

p = dr
for some 1 € QF ().

In other words

{exact k-forms on M} = Image [d - OF L) = QR |
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Last time, we saw:

="

If M™ is a smooth compact, connected, oriented
n-manifold (without boundary), then

H™(M™) # 0.
Why? If n € Q" 1(M), Stokes” = [, dn = 0.
I e QM) has [,,¢ # 0, then ¢ # dn.
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By contrast, we’ll also see:

Theorem. Let M"™ be a connected, n-manifold
(without boundary). If M is either non-compact
or non-orientable, then

H™(M") = 0.

Same conclusion if M compact manifold-with-boundary;,
where OM # &.
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Compactly supported de Rham complex:
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S~ —F

d2
Complex: d? = 0.

We may thus define

A = kerd : QF(M) — QFFL(M)
Image d : QF 1) — QF (M)
But qualitatively different from H¥(1)!
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Example. Let's contrast H¥(R) and H*(R).

0= QR) S QUR) S 0— - -
Q)(R) = {f(z) smooth | f(z) = 0 for z outside some [—L, L]}

QLR) = {g(z)dz | g(z) = 0 for z outside some [—L, L]}

f(z) d>§£ () do
SO
H)(R)=0, HR)=R,
whereas

H'R)=R, HYR)=0.
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whereas

0 otherwise.

HrE) — {R if k=0,

In particular. ..
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Thus, a compactly supported n-form on R" is
the exterior derivative of a compactly supported
(n — 1)-form iff its integral is zero.

Since Stokes’ tells us that

[ avr

for any ¢ € QP 1(R™), suffices to prove. ..
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