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Closed Forms. A differential form ¢ € QF(M)
1s said to be closed if

do = 0.

In other words
{closed k-forms on M} = ker [d - QF (M) — QkH(M)} .

Example. If n = dim M, then every ¢ € Q" (M)
is closed, because Q" H(M) = 0.

Example. If f € QO(M ), then f is closed <=
f is constant if M is connected.
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L) & k() & kL)
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d2
Recall: d? = 0.

Upshot: If 1 exact, then v is closed.

exact = closed.
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Let’s see this via some examples.
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Let w € Q"(R™) be a smooth n-form on R":

w=fz', .. 2" dz A Ada”

0.
for some smooth function f : R" LR

If we now set

1
X
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0
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Let M be a compact oriented n-manifold, OM = (.
Let w be any smooth (n — 1)-form on M.

/ dw =0
M

But oriented n-manifold M carries n-form 1 with

Joo

.. The closed form 7 is not exact.
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What about converse?

exact <= closed

Answer: It depends!
[t depends on the manifold M|

This leads to interesting invariants of M. ..
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Example. Let M be a connected manifold.
d ~ d ~0 1
e = 0= QN (M) = QM) — - -
H(M) =R.
Example. Or if M has ¢ connected components,

H'(M) = RE.
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k@) — {R if k=0,

0 otherwise.

Theorem. If M" is a smooth compact, connected,
oriented n-manifold (without boundary), then

HY(M™) 2 R

where the isomorphism 1s given by

= [ v

That 1s, an n-form 1s exact iff its integral = 0.
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