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Orientations.

Definition. A smooth n-manifold s said to be
orientable if it admits an atlas for which all the
transition functions ®, o @5_1 have Jacobian
matrices of positive determinant:

det d(®q 0 @51 > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form w € Q"(M) which is
everywhere non-zero:

w # 0.
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Two such forms determine the same orientation <
w= fw

for some smooth positive function f : M — RT.
Proposition. Let M be a smooth n-manifold.
Then M 1s orientable <=

AN'T*M — M
s trivial as a vector bundle.
Notice that A"T;M = R for every p € M.
So A"T7M — {0} = R — {0} has two connected
components.
Proposition. Suppose M 1is a smooth connected
n-manifold. Then M s orientable <=

AT M — 0,y

has two connected components.
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In fact, we can form a new n-manifold by setting

S~

M = (A"T*M —0,,) /R

This comes equipped with a 2-to-1 map M — M.
A point p € M consists of
e a point p € M: and

e an orientation of 7T’ M.

In particular, M is oriented.

Proposition. Suppose that M 1is a connected,
non-orientable manifold. Then there is a 2-to-1
covering map M — M, where M is a connected,
orientable manifold.

Corollary. Any stmply connected manifold M 1s
orientable.
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Suppose M oriented n-manifold,
XL« M"™ codimension-1 submanifold,
9+ X — M inclusion map.

If w e Q"(M) orientation-compatible,

choosing vector V.in T),M — T, X at p € X
orients 1, X via

7*(Vow) € A"ITHX.

Orientation <— “Which side of X 1s V on?”
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Boundary orientations:

If M is an oriented manifold-with-boundary;,
its boundary OM therefore inherits an orientation.

Our convention: out-pointing orientation.

If w e Q"(M) orientation-compatible,
and V € T),M out-pointing at some p € M,
then V_w orientation-compatible on M .
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Integrating n-forms on R".

Let w € Q0 (R") be a compactly supported smooth
n-form on R".

That is, let
w= flz', ... 2" dz" A A da”

for some smooth, compactly supported function f:

f:R" C—o; R, f = 0 outside some large ball.
We may then define

/ W = flat, ™y det A A da”
n Rn

to just mean the iterated integral

©.@) O
/ / e, aMda! - da”
— OO — O

which then, by Fubini's theorem, agrees with the
Lebesgue integral of f on R™.
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Similar for compactly supported n-form w € €2y (H")
on the half-space H” = {(z!, ..., 2") | z' < 0}.

That is, let
w= flz', ... 2" dz" A A da"

for some smooth, compactly supported function f:

fH" e R, f = 0 outside large half-ball.
We may then define
/nw: nf(xl,...,xn)dxl/\da:2/\---/\daz"
to just meaﬂi the iterated integral

00 oo 0
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which then, by Fubini’s theorem, agrees with the
Lebesgue integral of f on H".
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/F*w:/w

because the classical change-of-variable formula says
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Rn Rn

Oxk
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and det (%) > () if orientation-preserving.
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If //:R"™ — R"is an orientation-preserving diffeo-

/F*w:/w

because the classical change-of-variable formula says

morphism, then

F@ldyl" = (@)
Rn Rn

det
:

8yj

7k

)

|

However, notice that if F' : R" — R"™ were orientation-
reversing, we would instead have

/ F*w——/ W

so orientation is crucial for us!
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[f M is an oriented n-manifold, and if w € (M)
is any compactly supported smooth n-form on M.

we can now define f 1w as follows:

e cover the support of w with finitely many coor-
dinate domains Uy, ..., Uy;

e on each U choose an oriented coordinate system
b Uj; — RY
® write w as
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Stokes’ Theorem.

—

Let M be an oriented n-manifold-with-boundary:.

Let w be compactly supported (n — 1)-form on M.

fM AW = faMW

Classical special case due to Lord Kelvin (1854).
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Stokes’ Theorem.

Do you know that the condition that adx + Pdy + ydz may be the diff of a
function of two indep* variables for all points of a surface is

(8-4)on (-5 2

I made this out some weeks ago with ref* to electromagnetism. With refs to

an elastic solid, the cond” may be expressed thus — the resultant axis of rotation
at any point of the surface must be perp® to the normal.

Your’s very truly

WirLiam THoMsON

P.S. The following is also interesting, & is of importance with reference to
both physical subjects.

oot [ (- (-2 58]

where /, m, n denote the dir" cosines of a normal through any el dS of a
(limited ) surface; & the integ" in the sec’ member is performed over a portion
of this surface bounded by a curve round w" the int" in the 1" member is
performed.’

1 Stokes (11).

2 Stokes (40).

3 Stokes included the equation in this postscript on the Smith’s prize examination for 1854 (the
year Maxwell took the examination), and it has become known as Stokes’s Theorem. (See
Larmor’s footnote in Stokes's MPP, v, 320-1.)
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Stokes’ Theorem.

—

Let M be an oriented n-manifold-with-boundary:.

Let w be compactly supported (n — 1)-form on M.

fM AW = faMW




