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This is from the usual Leibniz rule for % acting on

functions of ¢ with values in fixed vector space.
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But there is a more efficient formulal
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Proof. Since the general ¢ is a finite sum of such
terms, we have thus proved Cartan’s magic formula
on the open set where V # 0.

By continuity, also true on the closure of this set.

But the complement of this closure is an open set
on which V = 0. Formula holds on this complement
because both sides vanish there.

Hence Cartan’s magic formula holds on all of M.
QED
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Ly = (dp)(V, _) +d[p(V)]
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Exercise: RHS is actually bilinear over C°°(M). ..
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(di)(U,V, W) = =[Ly|(U, W) + [d(Vay)](U, W)
_[‘va](Uv W) — Vw(wv U)—w([Ua V]v W>_¢([V7 W]v U)
A(Va)l(U, W) = Up(V, W)+Wip (U, V)= (W, U], V)
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Vaide = Lyp —d(Vip)

Reduces

d: QF(M) — Q¥ L)
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d: Q¥ ) = oF (.

Induction!



Orientations.



Orientations.

The group GL(n,R) of invertible n X n matrices



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > O;



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:



Orientations.

The group GL(n,R) of invertible n x n matrices

has exactly two connected components:

e The matrices with det > 0; and

e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

[

!
Vl

va
V2

n
E

e
Vi

VTL

n
L "2

L N2

1 /1
\/% V%
V7 V5 -

VIVE




Orientations.
The group GL(n,R) of invertible n x n matrices

has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

(V1, Vo, ..., Vp) — (e Ae*A- - Ae™)(V1, Vo, ..., Vi)



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

e T'he oriented bases:



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

e T'he oriented bases:

(e' Ao A eV, Vo, ..., Vy) >0



Orientations.

The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

e The oriented bases; and

e The anti-oriented bases.

(e' Ao Ae™) (Vi Vo, ..., V) >0
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The group GL(n,R) of invertible n x n matrices
has exactly two connected components:

e The matrices with det > 0; and
e The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

e The oriented bases; and

e The anti-oriented bases.
(e' Ao Ae™) (Vi Vo, ..., V) >0

(e' Ao Ae™) (Vi Vo, ..., V) <0
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Orientations.

Definition. A smooth n-manifold s said to be
orientable if it admits an atlas for which all the
transition functions ®, o @5_1 have Jacobian
matrices of positive determinant:

det d(®q 0 @51 > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form w € Q"(M) which is
everywhere non-zero:

w # 0.
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Two such forms determine the same orientation <
w= fw
for some smooth positive function f : M — RT.

Theorem. Smooth n-manifold M orientable <
AN"T*M — M

15 trivial as a vector bundle.



