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X(M), the maps

Oy M — M
are all diffeomorphisms, and satisfy
Op = 1d)y
Dy 0 Dy = Dyyuyg.

Thus, these form a one-parameter group of dif-
feomorphisms M — M.

Notice that
O_y = (By)~?

When V' not compactly supported, “flow” only
defined on neighborhood of M x {0} C M x R:

O: M xR--» M

where dashed arrow means “not defined everywhere.”
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Inverse function theorem: local diffeo near p. In-
troduce local coordinates (z?,...,z") on N, set

1 =t on R, pull back to % ¢ M via F~L. O
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Corollary. Let V', /W € X(M), and let
Oy = flow of V.
Then
[V, W]=0 < oW =W VL.

Proof.
LyW =[V, W],

and, because @, 0 Py = Dy 14,

d

ﬁvW = —((I)?W) —
dt =0
X d X
dt t=u
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Theorem. Let V', W € X(M), and set
Oy = flow of V', and Wy = flow of V.
Then
V,W=0 <= oV, =V 0ds Vu,t.

Proof. For a fixed value of ¢, the family of diffeo-
morphisms

Huzzcbt_lo\lluoq)t.

Then Iy = id,/, and, for any p,

d x
—ILu(p) = P W, () -

du
Thus, 11y, is flow of 311, and
QW =W = O loW,od;=1V, Vu.

However, &1 = W Vt <= [V, W] = 0. O
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Corollary. Let V', W € X(M), and suppose that,
for some p € M, the vectors V (p) and W (p) are
linearly independent in TpyM. Then [V, V] =0

on some neighborhood of p <= 4 coordinates

(z!,...,2™) on a neighborhood of p in which

O =2

V = .
Ox! Ox?



