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For us, the most important case will be ⊗kV∗.
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, · · · , ∂
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⊗kT ∗M =
∐
p∈M

[
⊗kT ∗pM

]
.

But over any coordinate domain U , we have a local
trivialization

TM |U = TU ∼= U × Rn

by using the coordinate basis{
∂

∂x1
, · · · , ∂

∂xn

}
associated with a coordinate system (x1, . . . , xn)
on U . This then gives rise to a local trivialization

⊗kT ∗M |U = ⊗kT ∗U ∼= U ×⊗k(Rn)∗ ∼= U ×Rn
k
.
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Given a smooth vector bundle

$ :E →M,

let

Γ(E) = {smooth sections σ : M → E}.
This is a module over the ring C∞(M):

(fσ)(p) = f (p) σ(p).

(This module structure actually contains enough in-
formation to reconstruct the bundle E, but we will
never explictly need this fact in our course.)
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Important case for us:

Γ(⊗kT ∗M) = {smooth sections σ : M → ⊗kT ∗M}.

Sections of such bundles are called tensor fields.

Proposition.Any ϕ ∈ Γ(⊗kT ∗M) defines a map

ϕ : X(M)× · · · × X(M)︸ ︷︷ ︸
k

→ C∞(M)

that is “multilinear” over C∞(M). Conversely,
any map

X(M)× · · · × X(M)︸ ︷︷ ︸
k

→ C∞(M)

that is multilinear over C∞(M) arises from a
unique tensor field ϕ ∈ Γ(⊗kT ∗M) .
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is a tensor field

du : X(M)→ C∞(M)

defined by
(du)(V) = Vu.

This is “linear” over C∞(M) because

(du)(fV) = fVu = f (Vu) = f (du)(V)

and

(du)(V+W) = (V+W)u = Vu+Wu = (du)(V)+(du)(W).

Of course, we may also view u ∈ C∞(M) as a
tensor field:

u ∈ Γ(⊗0T ∗M).
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Pull-backs. If

F : M → N

any smooth map, there is an induced “pull-back”
map

F ∗ : Γ(⊗kT ∗N)→ Γ(⊗kT ∗M),

because for every p ∈M we have an induced map

⊗kT ∗F (p)N → ⊗
kT ∗pM.

Notice this “goes backwards:”

Γ(⊗kT ∗M)
F ∗←− Γ(⊗kT ∗N)

M
F−→ N

Thus, M  Γ(⊗kT ∗M) is a contravariant functor.
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