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is sald to be multilinear if the associated maps

V— é(V,Vs,...,V})
V— ¢(V1,V, ..., V)

V— ¢(V1,V2,...,V)

are all linear maps V — R, for any fixed vectors
Vi,Vo,..., V. € V.
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Example. Let V = R", and let
o R"xR" =R
be the classical dot product:
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Then ¢ is “bilinear” (i.e. multilinear, with k = 2).
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Example. Suppose that o, 5,...,v € V*.

Define
ORQPLR - RY: VXV X XV—=R
by
(@®F®---®7)(V1, Vo, ..., Vi) = [V [B(V2)] - - - [7 (V)]

Then o ® f ® - - - ® v is a multilinear map,

called a simple tensor product.
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&

for any a,b € R.

By convention,

®OV* = R,



The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V x --- x V — R}.
k




The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V x --- x V — R}.
k

Proposition. If V is an n-dimensional vector
space, then



The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V x --- x V — R}.
k

Proposition. If V is an n-dimensional vector
space, then

dim ®F V* = n¥.



The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V - x V — R}

X e
k

Proposition. If V is an n-dimensional vector
space, then

dim ®F V* = n¥.

In fact, if {e!, €2, ..., €"} is a basis for V*,



The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V - x V — R}

X e
k

Proposition. If V is an n-dimensional vector
space, then

dim ®F V* = n¥.

In fact, if {e!, e, ..., e"} is a basis for V*, then

("@e?2® - -@e*|1<i,... i <n}



The k™ tensor product of the dual vector space is

defined to be

QFV* = {Multilinear maps V x V - x V — R}

X e
k

Proposition. If V is an n-dimensional vector
space, then

dim ®F V* = n¥.

In fact, if {e!, e, ..., e"} is a basis for V*, then
("@e?2® - -@e*|1<i,... i <n}
is a basis for @FV*
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k

Similarly, one defines

VeV*®@V = {Multilinear maps V*xVxV* — R},
and so forth.

Elements of all such spaces are said to be tensors
on V.

For us, the most important case will be QFEV*.
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IfV eV, and ¢ € @*V* then we may define
Vg e @ 1v*
by
(Vao)(Vi, ... V1) = o(V, V1, ..., V1)

This gives rise to an isomorphism
QFV* = Hom(V, @F~1v¥).

Similarly, for example,
V" @V = Hom(V,V) := End(V).
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w b — M,
let
['(E) = {smooth sections ¢ : M — E'}.

This is a module over the ring C°°(M):

(fo)(p) = f(p) o(p).

(This module structure actually contains enough in-
formation to reconstruct the bundle £, but we will
never explictly need this fact in our course.)
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Important case for us:

D(QFT* M) = {smooth sections o : M — Q*T*M?}.

Sections of such bundles are called tensor fields.

Proposition. Any ¢ € D(QFT*M) defines a map
o1 X(M) x - x X(M) = C(M)
)
that is “multilinear” over C'°°(M). Conwversely,

any map
X(M) x - x X(M) — C>(M)

VY a

k

that is multilinear over C°(M) arises from a
unique tensor field ¢ € D(QFT*M) .
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defined by
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Pull-backs. If
F:M— N

any smooth map, there is an induced “pull-back”
map

F*: D(@FT*N) — D(@FT* M),
because for every p € M we have an induced map

k k
T N = ST M.

Notice this “goes backwards:”

D(@FT* M) £ T(@kT* V)

M N

Thus, M ~» T(QFT*M) is a contravariant functor.
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Unfortunately, before they knew any better, some
classical geometers started calling elements of

D(@FT* M)
covariant tensor fields. Most of us now view this as
old-fashioned, deprecated terminology that belongs
on the trash-heap of history. Lee, unfortunately,
does not agree. So, even though I will avoid using
this misleading terminology myselt, you will need

to understand what he means by it in order to do
some of the homework problems.



