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Such a vector field may also be thought of as
smooth section V : M → TM of tangent bundle

$ : TM →M.

That is, V (p) ∈ TpM for every p ∈M .

Thus V : M → TM is a one-sided inverse of

$ : TM −→yM

Good generalization for vector fields that are Ck.
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The vector space

X(M) = {Smooth vector fields V on M}
carries Lie bracket operation

[ , ] : X(M)× X(M)→ X(M)

defined by

[V ,W ]f = VWf −WV f.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

[V ,W ] = −[W,V ]

2. Jacobi identity:

[U, [V ,W ]] + [V , [W,U ]] + [W, [U, V ]] = 0.

This makes X(M) into a “Lie algebra.”
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This map is called the flow of V .
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X(M), the maps
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are all diffeomorphisms, and satisfy

Φ0 = idM
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Notice that
Φ−t = (Φt)

−1
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