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Vo CR(M) — C%(M)
that satisfies the Leibniz rule

V(fg)=fVg+gVf.

[n any chart (system of local coordinates) (x*, ..., x"),
such a vector field takes the form

V = Z VI (x W

Infinite-dimensional vector space

X (M) = {Smooth vector fields V' on M}
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Good generalization for vector fields that are Ck.
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The vector space
X (M) = {Smooth vector fields 1V on M}

carries Lie bracket operation

[, ] X (M) x X(M) — X(M)
defined by

V,Wlf =VWf-WVF.

This map is linear in both arguments, and satisfies

1. Skew symmetry:
[V, W] =—=[W,V]
2. Jacobi identity:
U\, Wi+ [V, Ww,Ull+ W, U, V]| = 0.

This makes X(M) into a “Lie algebra.”
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Theorem. Given any V € X(M) and any p €
M, there exists a unique integral curve
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with v(0) = p, for some € > 0. Moreover, if /
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This map is called the flow of V.
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Theorem. Given any compactly supported V' &
X(M), the maps

Oy M — M
are all diffeomorphisms, and satisfy
Op = 1d)y
Dy 0 Dy = Dyyuyg.

Thus, these form a one-parameter group of dif-
feomorphisms M — M.

Notice that
O_y = (By)~?
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and let p1,...,pr. € M be any k points. Then
there is a coordinate domain U C M, U ~ R",
such that p1,...,pr € U.

When k = 2, take U to be coordinate domain > py.

Suffices to construct diffeo ® : M — M fixing pq
and with ®(py) € U.

Construct @ as some ®; for suitable V.

Construct V' to be supported near embedded curve
joining po to a point mn U.

General k£ similar; proceed by induction.



