MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

May 7, 2020

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

We'll call D a distribution of ℓ -planes on M.

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

Locally, D spanned by ℓ independent vector fields:

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

Locally, D spanned by ℓ independent vector fields: $D|_{\mathscr{U}} = \operatorname{span}\{\mathsf{V}_1, \dots, \mathsf{V}_\ell\}.$

Let $D \subset TM$ be smooth sub-bundle of rank $\ell < n$.

We'll call D a distribution of ℓ -planes on M.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that $D|_{\Sigma} = T\Sigma$?

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that $D|_{\Sigma} = T\Sigma$, and $\Sigma \neq \emptyset$?

Any such Σ is called an integral manifold of D.

When $\ell = 1$, we've seen this problem before...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we've seen this problem before...

When $\ell = 1$, we've seen this problem before...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we've seen this problem before...

When $\ell = 1$, we've seen this problem before...

For $V \in \mathfrak{X}(M)$, we said that

is an *integral curve* of V if

is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$

is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$
 for all $t \in (-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma: (-\varepsilon, \varepsilon) \to M$$

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma: (-\varepsilon, \varepsilon) \to M$$

with $\gamma(0) = p$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if $V \neq 0$, image of γ is an embedded submanifold.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we've seen this problem before...

When $\ell = 1$, we've seen this problem before...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we've seen this problem before...

When $\ell = 1$, we've seen this problem before...

Rescaling $V \rightsquigarrow fV$ just changes solution
Rescaling $V \rightsquigarrow fV$ just changes solution $\gamma: (-\varepsilon, \varepsilon) \rightarrow M$

$$\gamma: (-\varepsilon, \varepsilon) \to M$$
$$\frac{d}{dt} \gamma(t) = f V|_{\gamma(t)}$$

$$\gamma : (-\varepsilon, \varepsilon) \to M$$
$$\frac{d}{dt} \gamma(t) = f V|_{\gamma(t)}$$

through a given $p \in M$ by reparameterization

$$\gamma : (-\varepsilon, \varepsilon) \to M$$
$$\frac{d}{dt} \gamma(t) = f V|_{\gamma(t)}$$

through a given $p \in M$ by reparameterization $\gamma(t) \rightsquigarrow \gamma(u(t)).$

$$\gamma : (-\varepsilon, \varepsilon) \to M$$
$$\frac{d}{dt} \gamma(t) = fV|_{\gamma(t)}$$

through a given $p \in M$ by reparameterization $\gamma(t) \rightsquigarrow \gamma(u(t)).$

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if $V \neq 0$, image of γ is an embedded submanifold.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we have a good understanding...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we have a good understanding...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we have a good understanding...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

When $\ell = 1$, we have a good understanding...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

But when $\ell > 1$, another issue comes into play...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{\mathsf{V}_1, \dots, \mathsf{V}_\ell\},$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_{\ell}\},$ and $\Sigma \cap \mathscr{U}$ is defined by

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_\ell\},$ and $\Sigma \cap \mathscr{U}$ is defined by

$$f_1 = 0, \ldots, f_{n-\ell} = 0$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_{\ell}\},$ and $\Sigma \cap \mathscr{U}$ is defined by

$$f_1 = 0, \dots, f_{n-\ell} = 0$$

then

$$[V_i, V_j]f_k = V_iV_j0 - V_jV_i0 \equiv 0$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_{\ell}\},$ and $\Sigma \cap \mathscr{U}$ is defined by

$$f_1 = 0, \ldots, f_{n-\ell} = 0$$

then

$$[V_i, V_j]f_k = V_iV_j0 - V_jV_i0 \equiv 0$$

on Σ .

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_{\ell}\},$ and $\Sigma \cap \mathscr{U}$ is defined by

$$f_1 = 0, \ldots, f_{n-\ell} = 0$$

then

$$[V_i, V_j]f_k = V_iV_j0 - V_jV_i0 \equiv 0$$

on Σ . Hence

$$[V_i, V_j] \in T\Sigma = D$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

If D locally spanned by ℓ independent vector fields $D|_{\mathscr{U}} = \operatorname{span}\{V_1, \dots, V_{\ell}\},$ and $\Sigma \cap \mathscr{U}$ is defined by

$$f_1 = 0, \ldots, f_{n-\ell} = 0$$

then

$$[V_i, V_j]f_k = V_iV_j0 - V_jV_i0 \equiv 0$$

on Σ . Hence

$$[V_i, V_j] \in T\Sigma = D$$

along Σ .

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction:

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

 $[V_i, V_j] \in \text{span} \{V_1, \dots, V_\ell\}$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$$[V_i, V_j] \in \text{span} \{V_1, \dots, V_\ell\}$$

at any point where there exists an integral manifold.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$$[V_i, V_j] \in D$$

at any point where there exists an integral manifold.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

at any point where there exists an integral manifold.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

at any point where there exists an integral manifold.

 \therefore If \exists an integral manifold through each point,

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

at any point where there exists an integral manifold.

 \therefore If \exists an integral manifold through each point, then

 $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

at any point where there exists an integral manifold.

 \therefore If \exists an integral manifold through each point, then

 $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Obstruction: need

$[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

at any point where there exists an integral manifold.

 \therefore If \exists an integral manifold through each point, then

 $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere.

Conversely...

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Frobenius stated this criterion in the concrete form

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Frobenius stated this criterion in the concrete form

$$[V_i, V_j] = \sum_k a_{ij}^k V_k$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Frobenius stated this criterion in the concrete form $[V_i,V_j]\in \text{span }\{V_1,\ldots,V_\ell\}$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Frobenius stated this criterion in the concrete form

$$[V_i, V_j] = \sum_k a_{ij}^k V_k$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Frobenius stated this criterion in the concrete form $[V_i,V_j]\in \text{span }\{V_1,\ldots,V_\ell\}$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

We say that D is involutive
Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

We say that D is involutive if $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

We say that D is involutive if $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$ and we say that D is completely integrable

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

We say that D is involutive if $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

and we say that D is completely integrable if there is an integral manifold through every point.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). D is completely integrable $\iff D$ is involutive.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Statement is local:

$$\begin{split} [V_i,V_j] \in \text{span } \{V_1,\ldots,V_\ell\} \\ \text{Modify } V_2,\ldots,V_\ell \text{ so that} \\ [V_1,\tilde{V}_j] = 0 \end{split}$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Statement is local:

$$\begin{split} [V_i,V_j] \in \text{span } \{V_1,\ldots,V_\ell\} \\ \text{Successively modify } V_2,\ldots,V_\ell \text{ so that} \\ [V_1,\tilde{V}_j] = 0 \\ [\tilde{V}_2,\tilde{V}_j] = 0 \end{split}$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Statement is local:

$$\begin{split} [V_i,V_j] \in \text{span } \{V_1,\ldots,V_\ell\} \\ \text{Successively modify } V_2,\ldots,V_\ell \text{ so that} \\ [V_1,\tilde{V}_j] = 0 \\ [\tilde{V}_3,\tilde{V}_j] = 0 \end{split}$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Statement is local:

$$\begin{split} [V_i,V_j] \in \text{span } \{V_1,\ldots,V_\ell\} \\ \text{Replace with } \tilde{V}_1,\ldots,\tilde{V}_\ell \text{ so that} \\ [\tilde{V}_i,\tilde{V}_j] = 0. \end{split}$$

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M.

Are there ℓ -dimensional submanifolds $\Sigma \subset M$ such that D is tangent to Σ at each of its points?

Theorem (Frobenius). There exists an integral manifold through every $p \in M \iff$ $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$

everywhere on M. Moreover, when this happens, can find coordinates (x^1, \ldots, x^n) near any $p \in M$ in which

$$D = span \left\{ \frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^\ell} \right\}.$$

Example: Suppose $\ell = n - 1$,

where φ is a 1-form which is everywhere $\neq 0$.

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

But

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

But

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

But

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

$$\varphi(V) = \varphi(W) = 0 \implies d\varphi(V, W) = 0.$$

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

But

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

$$d\varphi = \varphi \wedge \psi, \quad \exists \psi \in \Omega^1.$$

where φ is a 1-form which is everywhere $\neq 0$.

Then D involutive \iff

$$\varphi(V) = \varphi(W) = 0 \implies \varphi([V, W]) = 0.$$

But

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

$$\varphi \wedge d\varphi = 0.$$