MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun
Stony Brook University

April 30, 2020

Closed Forms.

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0 .
$$

In other words

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.

Exact Forms.

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

$$
\varphi=d \eta
$$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

$$
\varphi=d \eta
$$

for some $\eta \in \Omega^{k-1}(M)$.

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

$$
\varphi=d \eta
$$

for some $\eta \in \Omega^{k-1}(M)$.
In other words

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

$$
\varphi=d \eta
$$

for some $\eta \in \Omega^{k-1}(M)$.
In other words
$\{$ exact k-forms on $M\}$

Closed Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be closed if

$$
d \varphi=0
$$

In other words
$\{$ closed k-forms on $M\}=\operatorname{ker}\left[d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)\right]$.
Exact Forms. A differential form $\varphi \in \Omega^{k}(M)$ is said to be exact if

$$
\varphi=d \eta
$$

for some $\eta \in \Omega^{k-1}(M)$.
In other words
$\{$ exact k-forms on $M\}=$ Image $\left[d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)\right]$.

De Rham Cohomology:

De Rham Cohomology:

De Rham complex:

$$
\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

De Rham Cohomology:

De Rham complex:

Complex: $d^{2}=0$.

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

Image $d \subset$ ker d

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { exact } \Longrightarrow \text { closed }
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

Image $d \subset$ ker d

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { Image } d \subset \text { ker } d
$$

$$
H^{k}(M):=\frac{\operatorname{ker} d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)}{\text { Image } d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)}
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { exact } \Longrightarrow \text { closed. }
$$

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { Image } d \subset \text { ker } d
$$

$$
H^{k}(M):=\frac{\operatorname{ker} d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)}{\text { Image } d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)}
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { exact } \Longrightarrow \text { closed. }
$$

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

De Rham Cohomology:

De Rham complex:
$\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

$$
\text { exact } \Longrightarrow \text { closed. }
$$

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Makes sense for manifolds-with-boundary, too.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
If M is any connected manifold,

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
If M is any connected manifold,

$$
H^{0}(M)=\mathbb{R}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
If M is any connected manifold,

$$
H^{0}(M)=\mathbb{R}
$$

More generally, if M has ℓ connected components,

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
If M is any connected manifold,

$$
H^{0}(M)=\mathbb{R}
$$

More generally, if M has ℓ connected components,

$$
H^{0}(M)=\mathbb{R}^{\ell}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
Poincaré Lemma.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:
Poincaré Lemma.

$$
H^{k}\left(\mathbb{R}^{n}\right)=\left\{\begin{array}{lc}
\mathbb{R} & \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary),

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary),

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \neq 0
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \neq 0
$$

Why? If $\eta \in \Omega^{n-1}(M)$, Stokes' \Longrightarrow

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \neq 0
$$

Why? If $\eta \in \Omega^{n-1}(M)$, Stokes' \Longrightarrow

$$
\int_{M} d \eta=\int_{\partial M} \eta=\int_{\varnothing} \eta=0
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \neq 0
$$

Why? If $\eta \in \Omega^{n-1}(M)$, Stokes' $\Longrightarrow \int_{M} d \eta=0$.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

Last time, we saw:

If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \neq 0
$$

Why? If $\eta \in \Omega^{n-1}(M)$, Stokes' $\Longrightarrow \int_{M} d \eta=0$.
\therefore If $\varphi \in \Omega^{n}(M)$ has $\int_{M} \varphi \neq 0$, then $\varphi \neq d \eta$.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{M} \varphi
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

Later today, we'll prove:

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{M} \varphi .
$$

That is, an n-form is exact iff its integral $=0$.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

By contrast, we'll also see:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

By contrast, we'll also see:

Theorem.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

By contrast, we'll also see:

Theorem. Let M^{n} be a connected, n-manifold (without boundary).

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

By contrast, we'll also see:

Theorem. Let M^{n} be a connected, n-manifold (without boundary). If M is either non-compact

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

By contrast, we'll also see:

Theorem. Let M^{n} be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

By contrast, we'll also see:
Theorem. Let M^{n} be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

$$
H^{n}\left(M^{n}\right)=0
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

By contrast, we'll also see:

Theorem. Let M^{n} be a connected, n-manifold (without boundary). If M is either non-compact or non-orientable, then

$$
H^{n}\left(M^{n}\right)=0
$$

Same conclusion if M compact manifold-with-boundary, where $\partial M \neq \varnothing$.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

$$
\cdots \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \cdots
$$

$$
\cdots \xrightarrow{\uparrow_{F^{*}}} \stackrel{\uparrow_{F^{*}}}{\stackrel{d}{k-1}(N)} \stackrel{\uparrow_{F^{*}}}{\Omega^{k}(N)} \xrightarrow{d} \Omega^{k+1}(N) \xrightarrow{d} \cdots
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

So $F^{*}:\{$ closed k-forms $\} \rightarrow\{$ closed k-forms $\}$,

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

So $F^{*}:\{$ closed k-forms $\} \rightarrow\{$ closed k-forms $\}$, and $F^{*}:\{$ exact k-forms $\} \rightarrow\{$ exact k-forms $\}$.

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

Thus, there is an induced liner map

$$
F^{*}: H^{k}(N) \rightarrow H^{k}(M)
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\operatorname{exact} k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

Thus, there is an induced liner map

$$
\begin{gathered}
F^{*}: H^{k}(N) \rightarrow H^{k}(M) . \\
{[\varphi] \longmapsto\left[F^{*} \varphi\right]}
\end{gathered}
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
d F^{*} \varphi=F^{*} d \varphi
$$

De Rham Cohomology:

$$
H^{k}(M):=\frac{\{\text { closed } k \text {-forms }\}}{\{\text { exact } k \text {-forms }\}}
$$

But first, let's look at pull-backs:
If $F: M \rightarrow N$ any smooth map, then

$$
F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)
$$

satisfies

$$
\begin{gathered}
d F^{*} \varphi=F^{*} d \varphi \\
H^{k}(M) \stackrel{F^{*}}{\leftrightarrows} H^{k}(N) \\
M \stackrel{F}{\longrightarrow} N
\end{gathered}
$$

Compactly supported cohomology.

Compactly supported cohomology.
Let $\Omega_{c}^{k}(M)=\{$ compactly supported smooth k-forms $\}$.

Compactly supported cohomology.

Compactly supported cohomology.
Compactly supported de Rham complex:

Compactly supported cohomology.
Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Compactly supported cohomology.
Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

Compactly supported cohomology.

Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.

Compactly supported cohomology.

Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.
We may thus define

Compactly supported cohomology.

Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.
We may thus define

$$
H_{c}^{k}(M):=\frac{\operatorname{ker} d: \Omega_{c}^{k}(M) \rightarrow \Omega_{c}^{k+1}(M)}{\text { Image } d: \Omega_{c}^{k-1}(M) \rightarrow \Omega_{c}^{k}(M)}
$$

Compactly supported cohomology.

Compactly supported de Rham complex:
$\cdots \xrightarrow{d} \Omega_{c}^{k-1}(M) \xrightarrow{d} \Omega_{c}^{k}(M) \xrightarrow{d} \Omega_{c}^{k+1}(M) \xrightarrow{d} \Omega_{c}^{k+2}(M) \xrightarrow{d} \cdots$

Complex: $d^{2}=0$.
We may thus define

$$
H_{c}^{k}(M):=\frac{\operatorname{ker} d: \Omega_{c}^{k}(M) \rightarrow \Omega_{c}^{k+1}(M)}{\text { Image } d: \Omega_{c}^{k-1}(M) \rightarrow \Omega_{c}^{k}(M)}
$$

But qualitatively different from $H^{k}(M)$!

Example.

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$$
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
\end{gathered}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

For such f and g,

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

For such f and g,

$$
\frac{d f}{d x}=0 \quad \Longleftrightarrow \quad f \equiv 0
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

For such f and g,

$$
\begin{aligned}
\frac{d f}{d x}=0 & \Longleftrightarrow f \equiv 0 . \\
g=\frac{d f}{d x} & \Longleftrightarrow f(x)=\int_{-\infty}^{x} g(t) d t
\end{aligned}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

For such f and g,

$$
\begin{aligned}
\frac{d f}{d x}=0 & \Longleftrightarrow f \equiv 0 . \\
g=\frac{d f}{d x} & \Longleftrightarrow 0=\int_{-\infty}^{\infty} g(t) d t
\end{aligned}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

$$
g(x)
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

$$
f(x)
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\begin{gathered}
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots \\
\Omega_{c}^{0}(\mathbb{R})=\{f(x) \text { smooth } \mid f(x)=0 \text { for } x \text { outside some }[-L, L]\} \\
\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0 \text { for } x \text { outside some }[-L, L]\}
\end{gathered}
$$

$$
f(x)
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

For such f and g,

$$
\begin{aligned}
\frac{d f}{d x}=0 & \Longleftrightarrow f \equiv 0 . \\
g=\frac{d f}{d x} & \Longleftrightarrow 0=\int_{-\infty}^{\infty} g(t) d t
\end{aligned}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

So

$$
H_{c}^{0}(\mathbb{R})=0, \quad H_{c}^{1}(\mathbb{R})=\mathbb{R}
$$

Example. Let's contrast $H_{c}^{k}(\mathbb{R})$ and $H^{k}(\mathbb{R})$.

$$
\cdots \rightarrow 0 \rightarrow \Omega_{c}^{0}(\mathbb{R}) \xrightarrow{d} \Omega_{c}^{1}(\mathbb{R}) \xrightarrow{d} 0 \rightarrow \cdots
$$

$\Omega_{c}^{0}(\mathbb{R})=\{f(x)$ smooth $\mid f(x)=0$ for x outside some $[-L, L]\}$
$\Omega_{c}^{1}(\mathbb{R})=\{g(x) d x \mid g(x)=0$ for x outside some $[-L, L]\}$

$$
f(x) \stackrel{d}{\longmapsto} \frac{d f}{d x}(x) d x .
$$

So

$$
H_{c}^{0}(\mathbb{R})=0, \quad H_{c}^{1}(\mathbb{R})=\mathbb{R}
$$

whereas

$$
H^{0}(\mathbb{R})=\mathbb{R}, \quad H^{1}(\mathbb{R})=0
$$

In fact, more generally...

In fact, more generally...

$$
H_{c}^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

In fact, more generally...

$$
H_{c}^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

whereas

In fact, more generally...

$$
H_{c}^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

whereas

$$
H^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

In fact, more generally...

$$
H_{c}^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

whereas

$$
H^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

In particular...

Theorem.

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Thus, a compactly supported n-form on \mathbb{R}^{n} is the exterior derivative of a compactly supported ($n-1$)-form iff its integral is zero.

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Thus, a compactly supported n-form on \mathbb{R}^{n} is the exterior derivative of a compactly supported ($n-1$)-form iff its integral is zero.

Since Stokes' tells us that

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Thus, a compactly supported n-form on \mathbb{R}^{n} is the exterior derivative of a compactly supported ($n-1$)-form iff its integral is zero.

Since Stokes' tells us that

$$
\int_{\mathbb{R}^{n}} d \psi=0
$$

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Thus, a compactly supported n-form on \mathbb{R}^{n} is the exterior derivative of a compactly supported ($n-1$)-form iff its integral is zero.

Since Stokes' tells us that

$$
\int_{\mathbb{R}^{n}} d \psi=0
$$

for any $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$,

Theorem.

$$
H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{\mathbb{R}^{n}} \varphi
$$

Thus, a compactly supported n-form on \mathbb{R}^{n} is the exterior derivative of a compactly supported ($n-1$)-form iff its integral is zero.

Since Stokes' tells us that

$$
\int_{\mathbb{R}^{n}} d \psi=0
$$

for any $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$, suffices to prove...

Proposition.

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$.

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$.

Have already seen for $n=1$.

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$.

Have already seen for $n=1$.
Now proceed by induction...

Proof

Proof by induction.

Proof by induction. Assume true for \mathbb{R}^{n-1},

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$.

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$,

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported.

Support of φ :

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Support of η :

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

Support of φ :

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Support of η :

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported.

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large L,

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$,

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

Reduction to \mathbb{R}^{n-1} :

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$.

Reduction to \mathbb{R}^{n-1} :

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$.

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But

$$
\int_{\mathbb{R}^{n-1}} \zeta
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But

$$
\int_{\mathbb{R}^{n-1}} \zeta=\int \cdots \int_{-\infty}^{\infty} f|d x|^{n}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But

$$
\int_{\mathbb{R}^{n-1}} \zeta=\int \cdots \int_{-\infty}^{\infty} f|d x|^{n}=\int_{\mathbb{R}^{n}} \varphi
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But

$$
\int_{\mathbb{R}^{n-1}} \zeta=\int \cdots \int_{-\infty}^{\infty} f|d x|^{n}=\int_{\mathbb{R}^{n}} \varphi=0
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$,

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis,

$$
\zeta=d \psi
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis,

$$
\zeta=d \psi, \quad \exists \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right) .
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$.

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$. Hence $\varphi=d \xi$,

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$.
Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right]
$$

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

$$
\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}
$$

$$
\phi(x)= \begin{cases}0 & \text { when } x \ll 0 \\ 1 & \text { when } x \gg 0\end{cases}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$.
Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right]
$$

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

$$
\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}
$$

$$
\phi(x)= \begin{cases}0 & \text { when } x \ll 0 \\ 1 & \text { when } x \gg 0\end{cases}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$.
Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right]
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$. Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right] \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)
$$

Notation:

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n-1} \\
\left(x^{1}, x^{2}, \ldots, x^{n}\right) & \longmapsto\left(x^{2}, \ldots, x^{n}\right)
\end{aligned}
$$

$$
\phi: \mathbb{R} \xrightarrow{C^{\infty}} \mathbb{R}
$$

$$
\phi(x)= \begin{cases}0 & \text { when } x \ll 0 \\ 1 & \text { when } x \gg 0\end{cases}
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$. Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right] \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)
$$

Proof by induction. Assume true for \mathbb{R}^{n-1}, and let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be compactly supported n-form

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

with $\int_{\mathbb{R}^{n}} \varphi=0$. Now the $(n-1)$-form

$$
\eta=\left[\int_{-\infty}^{x^{1}} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

certainly satisfies $\varphi=d \eta$, but is probably not compactly supported. However, when $x^{1}>L$, for some large $L, \eta=\pi^{*} \zeta$, where

$$
\zeta:=\left[\int_{-\infty}^{\infty} f\left(t, x^{2}, \ldots, x^{n}\right) d t\right] d x^{2} \wedge \cdots \wedge d x^{n}
$$

belongs to $\Omega_{c}^{n-1}\left(\mathbb{R}^{n-1}\right)$. But $\int_{\mathbb{R}^{n-1}} \zeta=0$, so, by inductive hypothesis, $\zeta=d \psi, \psi \in \Omega_{c}^{n-2}\left(\mathbb{R}^{n-1}\right)$. Hence $\varphi=d \xi$, where

$$
\xi=\eta-d\left[\phi\left(x^{1}\right) \pi^{*} \psi\right] \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right) . \quad \text { QED }
$$

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$.

Proposition. Let $\varphi \in \Omega_{c}^{n}\left(\mathbb{R}^{n}\right)$ be a compactly supported n-form with

$$
\int_{\mathbb{R}^{n}} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}\left(\mathbb{R}^{n}\right)$.

Using this, we now prove a major generalization. . .

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary),

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_{c}^{n}(M)$ be a compactly supported n-form

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_{c}^{n}(M)$ be a compactly supported n-form with

$$
\int_{M} \varphi=0
$$

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_{c}^{n}(M)$ be a compactly supported n-form with

$$
\int_{M} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}(M)$.

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_{c}^{n}(M)$ be a compactly supported n-form with

$$
\int_{M} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}(M)$.

Now recall an application of flow of a vector field...

Lemma. Let M^{n} be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathscr{U} \approx \mathbb{R}^{n}$ such that $p, q \in \mathscr{U}$.

Lemma. Let M^{n} be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathscr{U} \approx \mathbb{R}^{n}$ such that $p, q \in \mathscr{U}$.

Lemma. Let M^{n} be a smooth connected n-manifold, and let $p, q \in M$ be any two points. Then M contains a coordinate domain $\mathscr{U} \approx \mathbb{R}^{n}$ such that $p, q \in \mathscr{U}$.

Proposition. Let M^{n} be a connected, oriented n-manifold (without boundary), and let $\varphi \in \Omega_{c}^{n}(M)$ be a compactly supported n-form with

$$
\int_{M} \varphi=0
$$

Then

$$
\varphi=d \psi
$$

for some compactly supported form $\psi \in \Omega_{c}^{n-1}(M)$.

Proof. Choose some base-point $p \in M$.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathscr{U}_{\alpha} \approx \mathbb{R}^{n}$ such that $p \in \mathscr{U}_{\alpha}$ $\forall \alpha$.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathscr{U}_{\alpha} \approx \mathbb{R}^{n}$ such that $p \in \mathscr{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X=\operatorname{supp} \varphi$ by a finite collection $\mathscr{U}_{1}, \ldots \mathscr{U}_{\ell}$ of these.

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathscr{U}_{\alpha} \approx \mathbb{R}^{n}$ such that $p \in \mathscr{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X=\operatorname{supp} \varphi$ by a finite collection $\mathscr{U}_{1}, \ldots \mathscr{U}_{\ell}$ of these. Choose a partition of unity $f_{0}, f_{1}, \ldots f_{\ell}$ subordinate to the cover $(M-X), \mathscr{U}_{1}, \ldots \mathscr{U}_{\ell}$ of M, and set

$$
\varphi_{j}=f_{j} \varphi, \quad j=1, \ldots, \ell
$$

Proof. Choose some base-point $p \in M$. Since M is connected, Lemma tells us we can cover M by coordinate domains $\mathscr{U}_{\alpha} \approx \mathbb{R}^{n}$ such that $p \in \mathscr{U}_{\alpha}$ $\forall \alpha$. Since φ is compactly supported, we can then cover $X=\operatorname{supp} \varphi$ by a finite collection $\mathscr{U}_{1}, \ldots \mathscr{U}_{\ell}$ of these. Choose a partition of unity $f_{0}, f_{1}, \ldots f_{\ell}$ subordinate to the cover $(M-X), \mathscr{U}_{1}, \ldots \mathscr{U}_{\ell}$ of M, and set

$$
\varphi_{j}=f_{j} \varphi, \quad j=1, \ldots, \ell
$$

Then each n-forms φ_{j} is then compactly supported in \mathscr{U}_{j}, and

$$
\varphi=\varphi_{1}+\cdots+\varphi_{\ell}
$$

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$.

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$.

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$.

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$. We then extend ω to all of M by setting it equal to zero on the complement of \mathscr{V}.

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$. We then extend ω to all of M by setting it equal to zero on the complement of \mathscr{V}. Setting

$$
\widehat{\varphi}_{j}:=\varphi_{j}-\kappa_{j} \omega
$$

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$. We then extend ω to all of M by setting it equal to zero on the complement of \mathscr{V}. Setting

$$
\widehat{\varphi}_{j}:=\varphi_{j}-\kappa_{j} \omega
$$

where $\kappa_{j}:=\int_{M} \varphi_{j}$,

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$. We then extend ω to all of M by setting it equal to zero on the complement of \mathscr{V}. Setting

$$
\widehat{\varphi}_{j}:=\varphi_{j}-\kappa_{j} \omega
$$

where $\kappa_{j}:=\int_{M} \varphi_{j}$, then $\widehat{\varphi}_{j}$ is supported in \mathscr{U}_{j},

Now set $\mathscr{V}:=\cap_{j=1}^{\ell} \mathscr{U}_{j}$. Since, by construction, $p \in \mathscr{U}_{j}$ for all j, it follows that $\mathscr{V} \neq \varnothing$. We may therefore use a bump function supported near p to construct an n-form $\omega \in \Omega_{c}^{n}(\mathscr{V})$ with $\int_{\mathscr{V}} \omega=1$. We then extend ω to all of M by setting it equal to zero on the complement of \mathscr{V}. Setting

$$
\widehat{\varphi}_{j}:=\varphi_{j}-\kappa_{j} \omega
$$

where $\kappa_{j}:=\int_{M} \varphi_{j}$, then $\widehat{\varphi}_{j}$ is supported in \mathscr{U}_{j}, and satisfies

$$
\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=\int_{M} \widehat{\varphi}_{j}=0
$$

Now observe that

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

by assumption. Thus

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

by assumption. Thus

$$
\sum_{j=1}^{\ell} \widehat{\varphi}_{j}=\sum_{j=1}^{\ell}\left(\varphi_{j}-\kappa_{j} \omega\right)
$$

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

by assumption. Thus

$$
\begin{aligned}
\sum_{j=1}^{\ell} \widehat{\varphi}_{j} & =\sum_{j=1}^{\ell}\left(\varphi_{j}-\kappa_{j} \omega\right) \\
& =\sum_{j=1}^{\ell} \varphi_{j}-\left(\sum_{j=1}^{\ell} \kappa_{j}\right) \omega
\end{aligned}
$$

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

by assumption. Thus

$$
\begin{aligned}
\sum_{j=1}^{\ell} \widehat{\varphi}_{j} & =\sum_{j=1}^{\ell}\left(\varphi_{j}-\kappa_{j} \omega\right) \\
& =\sum_{j=1}^{\ell} \varphi_{j}-\left(\sum_{j=1}^{\ell} \kappa_{j}\right) \omega \\
& =\sum_{j=1}^{\ell} \varphi_{j}
\end{aligned}
$$

Now observe that

$$
\sum_{j=1}^{\ell} \kappa_{j}=\sum_{j=1}^{\ell} \int_{M} \varphi_{j}=\int_{M} \sum_{j=1}^{\ell} \varphi_{j}=\int_{M} \varphi=0
$$

by assumption. Thus

$$
\begin{aligned}
\sum_{j=1}^{\ell} \widehat{\varphi}_{j} & =\sum_{j=1}^{\ell}\left(\varphi_{j}-\kappa_{j} \omega\right) \\
& =\sum_{j=1}^{\ell} \varphi_{j}-\left(\sum_{j=1}^{\ell} \kappa_{j}\right) \omega \\
& =\sum_{j=1}^{\ell} \varphi_{j}=\varphi
\end{aligned}
$$

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$,

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$.

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero,

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}}{ }_{j} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.
It thus follows that

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.
It thus follows that

$$
\varphi=\sum_{j} \widehat{\varphi}_{j}=\sum_{j}\left(d \eta_{j}\right)=d\left(\sum_{j} \eta_{j}\right)=d \eta
$$

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.
It thus follows that

$$
\varphi=\sum_{j} \widehat{\varphi}_{j}=\sum_{j}\left(d \eta_{j}\right)=d\left(\sum_{j} \eta_{j}\right)=d \eta
$$

where $\eta \in \Omega_{c}^{n-1}(M)$.

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.
It thus follows that

$$
\varphi=\sum_{j} \widehat{\varphi}_{j}=\sum_{j}\left(d \eta_{j}\right)=d\left(\sum_{j} \eta_{j}\right)=d \eta
$$

where $\eta \in \Omega_{c}^{n-1}(M)$.
QED

But since $\mathscr{U}_{j} \approx \mathbb{R}^{n}$ and $\int_{\mathscr{U}_{j}} \widehat{\varphi}_{j}=0$, we therefore have

$$
\widehat{\varphi}_{j}=d \eta_{j}
$$

for some $\eta_{j} \in \Omega_{c}^{n-1}\left(\mathscr{U}_{j}\right)$, since $H_{c}^{n}\left(\mathbb{R}^{n}\right)=\mathbb{R}$. Now extend the compactly supported form η_{j} to M by zero, and notice that the finite sum

$$
\eta:=\sum_{j} \eta_{j}
$$

is then a compactly supported $(n-1)$-form on M.
It thus follows that

$$
\varphi=\sum_{j} \widehat{\varphi}_{j}=\sum_{j}\left(d \eta_{j}\right)=d\left(\sum_{j} \eta_{j}\right)=d \eta
$$

where $\eta \in \Omega_{c}^{n-1}(M)$.
QED
This now implies. . .

Theorem. If M^{n} is a connected, oriented smooth n-manifold (without boundary), then

$$
H_{c}^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

Theorem. If M^{n} is a connected, oriented smooth n-manifold (without boundary), then

$$
H_{c}^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{M} \varphi
$$

Theorem. If M^{n} is a connected, oriented smooth n-manifold (without boundary), then

$$
H_{c}^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{M} \varphi
$$

Specializing to the compact case, we thus have...

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

Theorem. If M^{n} is a smooth compact, connected, oriented n-manifold (without boundary), then

$$
H^{n}\left(M^{n}\right) \cong \mathbb{R}
$$

where the isomorphism is given by

$$
[\varphi] \longmapsto \int_{M} \varphi .
$$

