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Hk(Rn) =

{
R if k = 0,

0 otherwise.
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∴ If ϕ ∈ Ωn(M) has
∫
M ϕ 6= 0, then ϕ 6= dη.
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Hk
c (M) :=

ker d : Ωkc (M)→ Ωk+1
c (M)

Image d : Ωk−1
c (M)→ Ωkc (M)

But qualitatively different from Hk(M)!

86



Example. Let’s contrast Hk
c (R) and .Hk(R).

87



Example. Let’s contrast Hk
c (R) and Hk(R).

88



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

89



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

90



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

91



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

92



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

93



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

94



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

For such f and g,

95



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

For such f and g,

df

dx
= 0 ⇐⇒ f ≡ 0.

96



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

For such f and g,

df

dx
= 0 ⇐⇒ f ≡ 0.

g =
df

dx
⇐⇒ f (x) =

∫ x

−∞
g(t) dt

97



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

For such f and g,

df

dx
= 0 ⇐⇒ f ≡ 0.

g =
df

dx
⇐⇒ 0 =

∫ ∞
−∞

g(t) dt

98



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

g(x)

99



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)

100



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

g(x)

101



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)

102



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

For such f and g,

df

dx
= 0 ⇐⇒ f ≡ 0.

g =
df

dx
⇐⇒ 0 =

∫ ∞
−∞

g(t) dt

103



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

So
H0
c (R) = 0, H1

c (R) = R,

104



Example. Let’s contrast Hk
c (R) and Hk(R).

· · ·→0→Ω0
c(R)

d→ Ω1
c(R)

d→ 0→· · ·

Ω0
c(R) = {f (x) smooth | f (x) = 0 for x outside some [−L,L]}

Ω1
c(R) = {g(x) dx | g(x) = 0 for x outside some [−L,L]}

f (x)
d7−→ df

dx
(x) dx.

So
H0
c (R) = 0, H1

c (R) = R,
whereas

H0(R) = R, H1(R) = 0.

105



In fact, more generally. . .

106



In fact, more generally. . .

Hk
c (Rn) =

{
R if k = n,

0 otherwise,

107



In fact, more generally. . .

Hk
c (Rn) =

{
R if k = n,

0 otherwise,

whereas

108



In fact, more generally. . .

Hk
c (Rn) =

{
R if k = n,

0 otherwise,

whereas

Hk(Rn) =

{
R if k = 0,

0 otherwise.

109



In fact, more generally. . .

Hk
c (Rn) =

{
R if k = n,

0 otherwise,

whereas

Hk(Rn) =

{
R if k = 0,

0 otherwise.

In particular. . .

110



Theorem.

111



Theorem.
Hn
c (Rn) ∼= R,

112



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

113



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

114



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

Thus, a compactly supported n-form on Rn is
the exterior derivative of a compactly supported
(n− 1)-form iff its integral is zero.

115



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

Thus, a compactly supported n-form on Rn is
the exterior derivative of a compactly supported
(n− 1)-form iff its integral is zero.

Since Stokes’ tells us that

116



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

Thus, a compactly supported n-form on Rn is
the exterior derivative of a compactly supported
(n− 1)-form iff its integral is zero.

Since Stokes’ tells us that∫
Rn
dψ = 0

117



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

Thus, a compactly supported n-form on Rn is
the exterior derivative of a compactly supported
(n− 1)-form iff its integral is zero.

Since Stokes’ tells us that∫
Rn
dψ = 0

for any ψ ∈ Ωn−1
c (Rn), suffices to prove. . .

118



Theorem.
Hn
c (Rn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
Rn
ϕ.

Thus, a compactly supported n-form on Rn is
the exterior derivative of a compactly supported
(n− 1)-form iff its integral is zero.

Since Stokes’ tells us that∫
Rn
dψ = 0

for any ψ ∈ Ωn−1
c (Rn), suffices to prove. . .

119



Proposition.

120



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with

121



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then

122



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

123



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).

124



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).

Have already seen for n = 1.

125



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).

Have already seen for n = 1.

Now proceed by induction. . .

126



Proof by induction. Assume true for
mathbbRn−1, and let ϕ ∈ Ωnc (Rn) be compactly
supported n-form

127



Proof by induction. Assume true for
mathbbRn−1, and let ϕ ∈ Ωnc (Rn) be compactly
supported n-form

128



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

129



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

130



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

131



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

132



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

133



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

134



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some

135



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some

136



Support of ϕ:

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

137



Support of η:

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

138



Support of ϕ:

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

139



Support of η:

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

140



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some

141



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

142



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

143



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

144



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

145



Reduction to Rn−1:

ζ =

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

146



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

147



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). here

148



Reduction to Rn−1:

ζ =

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

149



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

150



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

151



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

152



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But∫

Rn−1
ζ=

∫
· · ·
∫ ∞
−∞

f |dx|n =

∫
Rn
ϕ = 0

153



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But∫

Rn−1
ζ =

∫
· · ·
∫ ∞
−∞

f |dx|n=

∫
Rn
ϕ = 0

154



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But∫

Rn−1
ζ =

∫
· · ·
∫ ∞
−∞

f |dx|n =

∫
Rn
ϕ= 0

155



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But∫

Rn−1
ζ =

∫
· · ·
∫ ∞
−∞

f |dx|n =

∫
Rn
ϕ = 0

156



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis,

157



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis,

ζ = dψ, ∃ψ ∈ Ωn−2
c (Rn−1).

158



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis,

ζ = dψ, ∃ψ ∈ Ωn−2
c (Rn−1).

159



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

160



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

161



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ]∈ Ωn−1
c (Rn). QED

162



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

163



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

φ : R C∞→ R

φ(x) =

{
0 when x� 0,

1 when x� 0,

164



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ]∈ Ωn−1
c (Rn). QED

165



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

φ : R C∞→ R

φ(x) =

{
0 when x� 0,

1 when x� 0,

166



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ]∈ Ωn−1
c (Rn). QED

167



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ] ∈ Ωn−1
c (Rn). QED

168



Notation:

π : Rn −→ Rn−1

(x1, x2, . . . , xn) 7−→ (x2, . . . , xn)

φ : R C∞→ R

φ(x) =

{
0 when x� 0,

1 when x� 0,

169



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ] ∈ Ωn−1
c (Rn). QED

170



Proof by induction. Assume true for Rn−1, and
let ϕ ∈ Ωnc (Rn) be compactly supported n-form

ϕ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

with
∫
Rn ϕ = 0. Now the (n− 1)-form

η =

[∫ x1

−∞
f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

certainly satisfies ϕ = dη, but is probably not com-
pactly supported. However, when x1 > L, for some
large L, η = π∗ζ , where

ζ :=

[∫ ∞
−∞

f (t, x2, . . . , xn) dt

]
dx2 ∧ · · · ∧ dxn

belongs to Ωn−1
c (Rn−1). But

∫
Rn−1 ζ = 0, so, by

inductive hypothesis, ζ = dψ, ψ ∈ Ωn−2
c (Rn−1).

Hence ϕ = dξ, where

ξ = η − d[φ(x1)π∗ψ] ∈ Ωn−1
c (Rn). QED

171



Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).
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Proposition. Let ϕ ∈ Ωnc (Rn) be a compactly
supported n-form with∫

Rn
ϕ = 0.

Then
ϕ = dψ

for some compactly supported form ψ ∈ Ωn−1
c (Rn).

Using this, we now prove a major generalization. . .
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Now recall an application of flow of a vector field. . .
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p, q ∈ U .
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Proof. Choose some base-point p ∈ M . Since M
is connected, Lemma tells us we can cover M by
coordinate domains U α ≈ Rn such that p ∈ U α

∀α. Since ϕ is compactly supported, we can then
cover X = supp ϕ by a finite collection U 1, . . .U `
of these. Choose a partition of unity f0, f1, . . . f `
subordinate to the cover (M − X),U 1, . . .U ` of
M , and set

ϕj = f jϕ, j = 1, . . . , `.

Then each n-forms ϕj is then compactly supported
in U j, and

ϕ = ϕ1 + · · · + ϕ`.

187
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Theorem. If Mn is a connected, oriented smooth
n-manifold (without boundary), then

Hn
c (Mn) ∼= R,

where the isomorphism is given by

[ϕ] 7−→
∫
M
ϕ.

Specializing to the compact case, we thus have. . .
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Theorem. If Mn is a smooth compact, connected,
oriented n-manifold (without boundary), then

Hn(Mn) ∼= R,
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Theorem. If Mn is a smooth compact, connected,
oriented n-manifold (without boundary), then

Hn(Mn) ∼= R,
where the isomorphism is given by

[ϕ] 7−→
∫
M
ϕ.
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