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= V [ϕ(W1, . . . ,Wk)]

−ϕ([V,W1], . . . ,Wk)

· · · − ϕ(W1, . . . , [V,Wk])

This is from the usual Leibniz rule for d
dt acting on

functions of t with values in fixed vector space.
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Lie derivatives:

For example, if ϕ ∈ Ω1(M),

(LVϕ) (W) = V [ϕ(W)]− ϕ([V,W])

Or, if ϕ ∈ Ω2(M),

(LVϕ) (U,W) = V [ϕ(U,W)]−ϕ([V,U],W)−ϕ(U, [V,W])

Useful and clarifying.

But there is a more efficient formula!
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QED
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Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ϕ ∈ Ω1(M),

LVϕ = (dϕ)(V, ) + d[ϕ(V)]

(LVϕ)(W) = (dϕ)(V,W) + Wϕ(V)

Vϕ(W)− ϕ([V,W]) = (dϕ)(V,W) + Wϕ(V)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ϕ ∈ Ω1(M),

LVϕ = (dϕ)(V, ) + d[ϕ(V)]

(LVϕ)(W) = (dϕ)(V,W) + Wϕ(V)

Vϕ(W)− ϕ([V,W]) = (dϕ)(V,W) + Wϕ(V)

(dϕ)(V,W) = Vϕ(W)−Wϕ(V)− ϕ([V,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ϕ ∈ Ω1(M),

LVϕ = (dϕ)(V, ) + d[ϕ(V)]

(LVϕ)(W) = (dϕ)(V,W) + Wϕ(V)

V [ϕ(W)]− ϕ([V,W]) = (dϕ)(V,W) + Wϕ(V)

(dϕ)(V,W) = Vϕ(W)−Wϕ(V)− ϕ([V,W])

Exercise: RHS is actually bilinear overC∞(M). . .
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

LVψ = Vy dψ + d(Vyψ)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

Vy dψ = LVψ − d(Vyψ)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

[Vy dψ](U,W) = [LVψ](U,W)− [d(Vyψ)](U,W)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(V,U,W) = [LVψ](U,W)− [d(Vyψ)](U,W)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(V,U,W) = [LVψ](U,W)− [d(Vyψ)](U,W)

[LVψ](U,W) = Vψ(U,W)−ψ([V,U],W)−ψ(U, [V,W])

[dϕ](U,W) = U [ϕ(W)]−Wϕ(U)− ϕ([U,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(V,U,W) = [LVψ](U,W)− [d(Vyψ)](U,W)

[LVψ](U,W) = Vψ(U,W)−ψ([V,U],W)−ψ(U, [V,W])

[d(Vyψ)](U,W) = U [(Vyψ)(W)]−W[(Vyψ)(U)]−(Vyψ)([U,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(V,U,W) = [LVψ](U,W)− [d(Vyψ)](U,W)

[LVψ](U,W) = Vψ(U,W)−ψ([V,U],W)−ψ(U, [V,W])

[d(Vyψ)](U,W) = Uψ(V,W)−Wψ(V,U)−ψ(V, [U,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(U,V,W) = −[LVψ](U,W) + [d(Vyψ)](U,W)

[LVψ](U,W) = Vψ(U,W)−ψ([V,U],W)−ψ(U, [V,W])

[d(Vyψ)](U,W) = Uψ(V,W)−Wψ(V,U)−ψ(V, [U,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(U,V,W) = −[LVψ](U,W) + [d(Vyψ)](U,W)

−[LVψ](U,W) = Vψ(W,U)−ψ([U,V],W)−ψ([V,W],U)

[d(Vyψ)](U,W) = Uψ(V,W)−Wψ(V,U)−ψ(V, [U,W])
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(U,V,W) = −[LVψ](U,W) + [d(Vyψ)](U,W)

−[LVψ](U,W) = Vψ(W,U)−ψ([U,V],W)−ψ([V,W],U)

[d(Vyψ)](U,W) = Uψ(V,W)+Wψ(U,V)−ψ([W,U],V)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Example. If ψ ∈ Ω2(M),

(dψ)(U,V,W) = −[LVψ](U,W) + [d(Vyψ)](U,W)

−[LVψ](U,W) = Vψ(W,U)−ψ([U,V],W)−ψ([V,W],U)

[d(Vyψ)](U,W) = Uψ(V,W)+Wψ(U,V)−ψ([W,U],V)

(dψ)(U,V,W) = Uψ(V,W) + Wψ(U,V) + Vψ(W,U)

− ψ([U,V],W)− ψ([W,U],V)− ψ([V,W],U)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Similar formulæ for d : Ωk(M)→ Ωk+1(M).
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Similar formulæ for d : Ωk(M)→ Ωk+1(M).

Proof of concept:
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Similar formulæ for d : Ωk(M)→ Ωk+1(M).

Proof of concept:

Vy dϕ = LVϕ− d(Vyϕ)
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Similar formulæ for d : Ωk(M)→ Ωk+1(M).

Proof of concept:

Vy dϕ = LVϕ− d(Vyϕ)

Reduces
d : Ωk(M)→ Ωk+1(M)

to
d : Ωk−1(M)→ Ωk(M).
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Exterior Derivative, revisited.

Cartan’s magic formula ⇒ intrinsic formulæ for d.

Similar formulæ for d : Ωk(M)→ Ωk+1(M).

Proof of concept:

Vy dϕ = LVϕ− d(Vyϕ)

Reduces
d : Ωk(M)→ Ωk+1(M)

to
d : Ωk−1(M)→ Ωk(M).

Induction!
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Orientations.
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Orientations.

The group GL(n,R) of invertible n× n matrices
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:
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• The matrices with det < 0.
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

V1

1
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n
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Vnn
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V1

1 V1
2 · · · V

1
n

V2
1 V2

2 · · · V
2
n

... ... ...
Vn1 Vn2 · · · V

n
n

∣∣∣∣∣∣∣∣
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

(V1,V2, . . . ,Vn) 7−→ (e1∧e2∧· · ·∧en)(V1,V2, . . . ,Vn)
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

• The oriented bases; and

• The anti-oriented bases.
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

• The oriented bases; and

• The anti-oriented bases.

(e1 ∧ · · · ∧ en)(V1,V2, . . . ,Vn) > 0
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

• The oriented bases; and

• The anti-oriented bases.

(e1 ∧ · · · ∧ en)(V1,V2, . . . ,Vn) > 0
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Orientations.

The group GL(n,R) of invertible n × n matrices
has exactly two connected components:

• The matrices with det > 0; and

• The matrices with det < 0.

This means that there are exactly two connected
components for the bases of an n-dimensional real
vector space:

• The oriented bases; and

• The anti-oriented bases.

(e1 ∧ · · · ∧ en)(V1,V2, . . . ,Vn) > 0

(e1 ∧ · · · ∧ en)(V1,V2, . . . ,Vn) < 0
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Orientations.
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form ω ∈ Ωn(M) which is
everywhere non-zero:
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form ω ∈ Ωn(M) which is
everywhere non-zero:
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form ω ∈ Ωn(M) which is
everywhere non-zero:
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form ω ∈ Ωn(M) which is
everywhere non-zero:
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Orientations.

Definition. A smooth n-manifold is said to be
orientable if it admits an atlas for which all the
transition functions Φα ◦ Φβ

−1 have Jacobian
matrices of positive determinant:

det d(Φα ◦ Φβ
−1) > 0.

Definition. An orientation for M is a maximal
atlas with this property.

Theorem. A smooth n-manifold is orientable iff
it carries a smooth n-form ω ∈ Ωn(M) which is
everywhere non-zero:

ω 6= 0.
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Two such forms determine the same orientation⇔
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Two such forms determine the same orientation⇔
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Two such forms determine the same orientation⇔
ω̃ = fω
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Two such forms determine the same orientation⇔
ω̃ = fω

for some smooth positive function f : M → R+.
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Two such forms determine the same orientation⇔
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Two such forms determine the same orientation⇔
ω̃ = fω

for some smooth positive function f : M → R+.

Theorem. Smooth n-manifold M orientable ⇔
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Two such forms determine the same orientation⇔
ω̃ = fω

for some smooth positive function f : M → R+.

Theorem. Smooth n-manifold M orientable ⇔
ΛnT ∗M →M
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Two such forms determine the same orientation⇔
ω̃ = fω

for some smooth positive function f : M → R+.

Theorem. Smooth n-manifold M orientable ⇔
ΛnT ∗M →M

is trivial as a vector bundle.
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