MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun
Stony Brook University
April 21, 2020

Lie derivatives:

Lie derivative of tensor field $\varphi \mathrm{w} /$ resp. to V :

Lie derivatives:

Lie derivatives:

$$
\Phi_{t}^{*} \varphi
$$

Lie derivatives:

$$
\frac{d}{d t} \Phi_{t}^{*} \varphi
$$

Lie derivatives:

$$
\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$,

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$, this can be computed via the following Leibniz rule:

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$, this can be computed via the following Leibniz rule:

$$
\left.\left.\begin{array}{rl}
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)=\mathcal{L}_{\mathrm{V}} & {[}
\end{array}\right)\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] ~\left\{\begin{array}{l}
\\
\\
\\
\\
\cdots\left(\mathcal{L}_{\vee} \mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right) \\
\cdots\left(\mathrm{W}_{1}, \ldots, \mathcal{L}_{\vee} \mathrm{W}_{k}\right)
\end{array}\right.
$$

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$, this can be computed via the following Leibniz rule:

$$
\begin{aligned}
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)=\mathcal{L}_{\mathrm{V}}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\mathcal{L} \vee \mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots, \mathcal{L} \mathrm{~W} \mathrm{~W}_{k}\right) \\
=\mathrm{V}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\left[\mathrm{V}, \mathrm{~W}_{1}\right], \ldots, \mathrm{W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots,\left[\mathrm{~V}, \mathrm{~W}_{k}\right]\right)
\end{aligned}
$$

Lie derivatives:

$$
\mathcal{L}_{\vee} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$, this can be computed via the following Leibniz rule:

$$
\begin{aligned}
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)=\mathcal{L}_{\mathrm{V}}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\mathcal{L} \vee \mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots, \mathcal{L} \mathrm{~W} \mathrm{~W}_{k}\right) \\
=\mathrm{V}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\left[\mathrm{V}, \mathrm{~W}_{1}\right], \ldots, \mathrm{W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots,\left[\mathrm{~V}, \mathrm{~W}_{k}\right]\right)
\end{aligned}
$$

This is from the usual Leibniz rule for $\frac{d}{d t}$

Lie derivatives:

$$
\mathcal{L}_{\mathrm{V}} \varphi:=\left.\frac{d}{d t} \Phi_{t}^{*} \varphi\right|_{t=0}
$$

where Φ_{t} is the flow of V .
For $\varphi \in \Omega^{k}(M)$, or more generally $\varphi \in \Gamma\left(\otimes^{k} T^{*} M\right)$, this can be computed via the following Leibniz rule:

$$
\begin{aligned}
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)=\mathcal{L}_{\mathrm{V}}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\mathcal{L} \vee \mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots, \mathcal{L} \mathrm{~W} \mathrm{~W}_{k}\right) \\
=\mathrm{V}[& \left.\varphi\left(\mathrm{W}_{1}, \ldots, \mathrm{~W}_{k}\right)\right] \\
& -\varphi\left(\left[\mathrm{V}, \mathrm{~W}_{1}\right], \ldots, \mathrm{W}_{k}\right) \\
& \cdots-\varphi\left(\mathrm{W}_{1}, \ldots,\left[\mathrm{~V}, \mathrm{~W}_{k}\right]\right)
\end{aligned}
$$

This is from the usual Leibniz rule for $\frac{d}{d t}$ acting on functions of t with values in fixed vector space.

Lie derivatives:

Lie derivatives:
For example, if $\varphi \in \Omega^{1}(M)$,

Lie derivatives:
For example, if $\varphi \in \Omega^{1}(M)$,

$$
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)(\mathrm{W})=\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])
$$

Lie derivatives:
For example, if $\varphi \in \Omega^{1}(M)$,

$$
\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{W})=\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])
$$

Or, if $\varphi \in \Omega^{2}(M)$,

Lie derivatives:
For example, if $\varphi \in \Omega^{1}(M)$,

$$
\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{W})=\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])
$$

Or, if $\varphi \in \Omega^{2}(M)$,
$\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{U}, \mathrm{W})=\mathrm{V}[\varphi(\mathrm{U}, \mathrm{W})]-\varphi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\varphi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$

Lie derivatives:

For example, if $\varphi \in \Omega^{1}(M)$,

$$
\left(\mathcal{L}_{\mathrm{V} \varphi} \varphi\right)(\mathrm{W})=\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])
$$

Or, if $\varphi \in \Omega^{2}(M)$,
$\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{U}, \mathrm{W})=\mathrm{V}[\varphi(\mathrm{U}, \mathrm{W})]-\varphi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\varphi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$

Useful and clarifying.

Lie derivatives:

For example, if $\varphi \in \Omega^{1}(M)$,

$$
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)(\mathrm{W})=\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])
$$

Or, if $\varphi \in \Omega^{2}(M)$,
$\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{U}, \mathrm{W})=\mathrm{V}[\varphi(\mathrm{U}, \mathrm{W})]-\varphi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\varphi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$
Useful and clarifying.
But there is a more efficient formula!

Cartan's Magic Formula:

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Here \lrcorner denotes contraction:

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Here \lrcorner denotes contraction:

$$
(\mathrm{V}\lrcorner \psi)(\ldots, \ldots, \ldots):=\psi(\mathrm{V}, \ldots, \ldots, \ldots) .
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

For example, if $\varphi \in \Omega^{1}(M)$,

$$
\mathcal{L}_{\mathrm{V}} \varphi=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})]
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Near any point where $V \neq 0$,

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V=\frac{\partial}{\partial x^{1}}$.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V=\frac{\partial}{\partial x^{1}}$.
In these coordinates, the flow Φ_{t} of V is given by

$$
\Phi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, \ldots, x^{n}\right)
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Near any point where $\mathrm{V} \neq 0$, choose coordinates in which $V=\frac{\partial}{\partial x^{1}}$.
In these coordinates, the flow Φ_{t} of V is given by

$$
\Phi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, \ldots, x^{n}\right)
$$

so

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Near any point where $\mathrm{V} \neq 0$, choose coordinates in which $\mathrm{V}=\frac{\partial}{\partial x^{1}}$.
In these coordinates, the flow Φ_{t} of V is given by

$$
\Phi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, \ldots, x^{n}\right)
$$

so
$\Phi_{t}^{*}\left(\sum \varphi_{I}\left(x^{1}, \ldots, x^{n}\right) d x^{I}\right)=\sum \varphi_{I}\left(x^{1}+t, \ldots, x^{n}\right) d x^{I}$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Near any point where $\mathrm{V} \neq 0$, choose coordinates in which $\mathrm{V}=\frac{\partial}{\partial x^{1}}$.
In these coordinates, the flow Φ_{t} of V is given by

$$
\Phi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, \ldots, x^{n}\right)
$$

so
$\Phi_{t}^{*}\left(\sum \varphi_{I}\left(x^{1}, \ldots, x^{n}\right) d x^{I}\right)=\sum \varphi_{I}\left(x^{1}+t, \ldots, x^{n}\right) d x^{I}$
and hence

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Near any point where $\mathrm{V} \neq 0$, choose coordinates in which $\mathrm{V}=\frac{\partial}{\partial x^{1}}$.
In these coordinates, the flow Φ_{t} of V is given by

$$
\Phi_{t}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}+t, \ldots, x^{n}\right)
$$

so
$\Phi_{t}^{*}\left(\sum \varphi_{I}\left(x^{1}, \ldots, x^{n}\right) d x^{I}\right)=\sum \varphi_{I}\left(x^{1}+t, \ldots, x^{n}\right) d x^{I}$
and hence

$$
\mathcal{L}_{\mathrm{V}}\left(\sum \varphi_{I} d x^{I}\right)=\sum \frac{\partial \varphi_{I}}{\partial x^{1}} d x^{I}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I=\left\{i_{1}, \ldots, i_{k}\right\}$.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then
$\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi)=$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then
$\left.\left.\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi)=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{I}\right)+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{I}\right]\right)$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.\left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{I}\right)+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{I}\right]\right) \\
& \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d f \wedge d x^{I}\right)+0
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.\left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{I}\right)+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{I}\right]\right) \\
& \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner \sum_{j} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{I}+0
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.\left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{I}\right)+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{I}\right]\right) \\
& \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner \sum_{j} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{I}+0 \\
& =\frac{\partial f}{\partial x^{1}} d x^{I}
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Now, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{I}
$$

where $1 \notin I$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.\left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{I}\right)+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{I}\right]\right) \\
& \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner \sum_{j} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{I}+0 \\
& =\frac{\partial f}{\partial x^{1}} d x^{I}=\mathcal{L}_{\mathrm{V}} \varphi
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi)=
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi)= & \left.\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right) \\
& \left.+d\left(\frac{\partial}{\partial x^{1}}\right\lrcorner\left[f d x^{1} \wedge d x^{J}\right]\right)
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then
$\left.\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi)=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right)$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right) \\
& \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d f \wedge d x^{1} \wedge d x^{J}\right)+d f \wedge d x^{J}
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}^{\prime}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right) \\
& \left.=-\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d x^{1} \wedge d f \wedge d x^{J}\right)+d f \wedge d x^{J}
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\vee\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right) \\
& \left.=-\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d x^{1} \wedge d f \wedge d x^{J}\right)+d f \wedge d x^{J} \\
& =-\sum_{i \neq 1} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J}+\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J}
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right) \\
& \left.=-\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d x^{1} \wedge d f \wedge d x^{J}\right)+d f \wedge d x^{J} \\
& =-\sum_{i \neq 1} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J}+\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J} \\
& =\frac{\partial f}{\partial x^{1}} d x^{1} \wedge d x^{J}
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Next, consider the special case

$$
\varphi=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge d x^{J}
$$

where $1 \notin J$. Then

$$
\begin{aligned}
\mathrm{V}\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi) & \left.=\frac{\partial}{\partial x^{1}}\right\lrcorner d\left(f d x^{1} \wedge d x^{J}\right)+d\left(f d x^{J}\right) \\
& \left.=-\frac{\partial}{\partial x^{1}}\right\lrcorner\left(d x^{1} \wedge d f \wedge d x^{J}\right)+d f \wedge d x^{J} \\
& =-\sum_{i \neq 1} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J}+\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{J} \\
& =\frac{\partial f}{\partial x^{1}} d x^{1} \wedge d x^{J}=\mathcal{L}_{\mathrm{V}} \varphi
\end{aligned}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms,

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\vee} \varphi=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right) .
$$

Proof. Since the general φ is a finite sum of such terms,

$$
f d x^{I}, \quad f d x^{1} \wedge d x^{J}
$$

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms,

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathrm{V} \neq 0$.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $V \neq 0$.

By continuity, also true on the closure of this set.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathrm{V} \neq 0$.

By continuity, also true on the closure of this set.
But the complement of this closure is an open set on which $\mathrm{V} \equiv 0$.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathrm{V} \neq 0$.

By continuity, also true on the closure of this set.
But the complement of this closure is an open set on which $\mathrm{V} \equiv 0$. Formula holds on this complement because both sides vanish there.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathrm{V} \neq 0$.

By continuity, also true on the closure of this set.
But the complement of this closure is an open set on which $\mathrm{V} \equiv 0$. Formula holds on this complement because both sides vanish there.

Hence Cartan's magic formula holds on all of M.

Cartan's Magic Formula: If $\varphi \in \Omega^{k}(M)$, then, for any $\mathrm{V} \in \mathfrak{X}(M)$, then

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathrm{V} \neq 0$.

By continuity, also true on the closure of this set.
But the complement of this closure is an open set on which $\mathrm{V} \equiv 0$. Formula holds on this complement because both sides vanish there.

Hence Cartan's magic formula holds on all of M.
QED

Exterior Derivative, revisited.

Exterior Derivative, revisited.
Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\left.\left.\mathcal{L}_{\mathrm{V} \varphi}=\mathrm{V}\right\lrcorner d \varphi+d(\mathrm{~V}\lrcorner \varphi\right)
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\mathcal{L}_{\mathrm{V} \varphi}=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})]
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\begin{gathered}
\mathcal{L}_{\mathrm{V} \varphi}=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})] \\
\left(\mathcal{L}_{\mathrm{V} \varphi} \varphi(\mathrm{~W})=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V})\right.
\end{gathered}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\begin{gathered}
\mathcal{L}_{\mathrm{V} \varphi}=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})] \\
\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{W})=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V})
\end{gathered}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\begin{gathered}
\mathcal{L}_{\mathrm{V} \varphi}=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})] \\
\left(\mathcal{L}_{\mathrm{V}} \varphi\right)(\mathrm{W})=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
\mathrm{V} \varphi(\mathrm{~W})-\varphi([\mathrm{V}, \mathrm{~W}])=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V})
\end{gathered}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\begin{gathered}
\mathcal{L}_{\mathrm{V} \varphi}=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})] \\
\left(\mathcal{L}_{\mathrm{V} \varphi}\right)(\mathrm{W})=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
\mathrm{V} \varphi(\mathrm{~W})-\varphi([\mathrm{V}, \mathrm{~W}])=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
(d \varphi)(\mathrm{V}, \mathrm{~W})=\mathrm{V} \varphi(\mathrm{~W})-\mathrm{W} \varphi(\mathrm{~V})-\varphi([\mathrm{V}, \mathrm{~W}])
\end{gathered}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\varphi \in \Omega^{1}(M)$,

$$
\begin{gathered}
\mathcal{L}_{\mathrm{V}} \varphi=(d \varphi)(\mathrm{V}, \ldots)+d[\varphi(\mathrm{~V})] \\
\left(\mathcal{L}_{\mathrm{V} \varphi} \varphi\right)(\mathrm{W})=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
\mathrm{V}[\varphi(\mathrm{~W})]-\varphi([\mathrm{V}, \mathrm{~W}])=(d \varphi)(\mathrm{V}, \mathrm{~W})+\mathrm{W} \varphi(\mathrm{~V}) \\
(d \varphi)(\mathrm{V}, \mathrm{~W})=\mathrm{V} \varphi(\mathrm{~W})-\mathrm{W} \varphi(\mathrm{~V})-\varphi([\mathrm{V}, \mathrm{~W}])
\end{gathered}
$$

Exercise: RHS is actually bilinear over $C^{\infty}(M) \ldots$

Exterior Derivative, revisited.
Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.\left.\mathcal{L}_{\mathrm{V}} \psi=\mathrm{V}\right\lrcorner d \psi+d(\mathrm{~V}\lrcorner \psi\right)
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.\mathrm{V}\lrcorner d \psi=\mathcal{L}_{\mathrm{V}} \psi-d(\mathrm{~V}\lrcorner \psi\right)
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.[\mathrm{V}\lrcorner d \psi](\mathrm{U}, \mathrm{~W})=\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})-[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W})
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.(d \psi)(\mathrm{V}, \mathrm{U}, \mathrm{~W})=\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})-[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W})
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.(d \psi)(\mathrm{V}, \mathrm{U}, \mathrm{~W})=\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})-[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W})
$$

$[\mathcal{L} \vee \psi](\mathrm{U}, \mathrm{W})=\mathrm{V} \psi(\mathrm{U}, \mathrm{W})-\psi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\psi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$

$$
[d \varphi](\mathrm{U}, \mathrm{~W})=\mathrm{U}[\varphi(\mathrm{~W})]-\mathrm{W} \varphi(\mathrm{U})-\varphi([\mathrm{U}, \mathrm{~W}])
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\left.(d \psi)(\mathrm{V}, \mathrm{U}, \mathrm{~W})=\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})-[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W})
$$

$[\mathcal{L} \vee \psi](\mathrm{U}, \mathrm{W})=\mathrm{V} \psi(\mathrm{U}, \mathrm{W})-\psi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\psi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$
$[d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{W})=\mathrm{U}[(\mathrm{V}\lrcorner \psi)(\mathrm{W})]-\mathrm{W}[(\mathrm{V}\lrcorner \psi)(\mathrm{U})]-(\mathrm{V}\lrcorner \psi)([\mathrm{U}, \mathrm{W}])$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,
$\left.(d \psi)(\mathrm{V}, \mathrm{U}, \mathrm{W})=\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{W})-[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{W})$
$[\mathcal{L} \vee \psi](\mathrm{U}, \mathrm{W})=\mathrm{V} \psi(\mathrm{U}, \mathrm{W})-\psi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\psi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$
$[d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{W})=\mathrm{U} \psi(\mathrm{V}, \mathrm{W})-\mathrm{W} \psi(\mathrm{V}, \mathrm{U})-\psi(\mathrm{V},[\mathrm{U}, \mathrm{W}])$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,
$(d \psi)(\mathrm{U}, \mathrm{V}, \mathrm{W})=-[\mathcal{L} \mathrm{V} \psi](\mathrm{U}, \mathrm{W})+[d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{W})$
$[\mathcal{L} \vee \psi](\mathrm{U}, \mathrm{W})=\mathrm{V} \psi(\mathrm{U}, \mathrm{W})-\psi([\mathrm{V}, \mathrm{U}], \mathrm{W})-\psi(\mathrm{U},[\mathrm{V}, \mathrm{W}])$
$[d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{W})=\mathrm{U} \psi(\mathrm{V}, \mathrm{W})-\mathrm{W} \psi(\mathrm{V}, \mathrm{U})-\psi(\mathrm{V},[\mathrm{U}, \mathrm{W}])$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\begin{aligned}
& \left.(d \psi)(\mathrm{U}, \mathrm{~V}, \mathrm{~W})=-\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})+[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W}) \\
& -\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})=\mathrm{V} \psi(\mathrm{~W}, \mathrm{U})-\psi([\mathrm{U}, \mathrm{~V}], \mathrm{W})-\psi([\mathrm{V}, \mathrm{~W}], \mathrm{U}) \\
& [d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{~W})=\mathrm{U} \psi(\mathrm{~V}, \mathrm{~W})-\mathrm{W} \psi(\mathrm{~V}, \mathrm{U})-\psi(\mathrm{V},[\mathrm{U}, \mathrm{~W}])
\end{aligned}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\begin{aligned}
& \left.(d \psi)(\mathrm{U}, \mathrm{~V}, \mathrm{~W})=-\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})+[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W}) \\
& -\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})=\mathrm{V} \psi(\mathrm{~W}, \mathrm{U})-\psi([\mathrm{U}, \mathrm{~V}], \mathrm{W})-\psi([\mathrm{V}, \mathrm{~W}], \mathrm{U}) \\
& [d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{~W})=\mathrm{U} \psi(\mathrm{~V}, \mathrm{~W})+\mathrm{W} \psi(\mathrm{U}, \mathrm{~V})-\psi([\mathrm{W}, \mathrm{U}], \mathrm{V})
\end{aligned}
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Example. If $\psi \in \Omega^{2}(M)$,

$$
\begin{aligned}
& \left.(d \psi)(\mathrm{U}, \mathrm{~V}, \mathrm{~W})=-\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})+[d(\mathrm{~V}\lrcorner \psi)\right](\mathrm{U}, \mathrm{~W}) \\
& -\left[\mathcal{L}_{\mathrm{V}} \psi\right](\mathrm{U}, \mathrm{~W})=\mathrm{V} \psi(\mathrm{~W}, \mathrm{U})-\psi([\mathrm{U}, \mathrm{~V}], \mathrm{W})-\psi([\mathrm{V}, \mathrm{~W}], \mathrm{U}) \\
& [d(\mathrm{~V}\lrcorner \psi)](\mathrm{U}, \mathrm{~W})=\mathrm{U} \psi(\mathrm{~V}, \mathrm{~W})+\mathrm{W} \psi(\mathrm{U}, \mathrm{~V})-\psi([\mathrm{W}, \mathrm{U}], \mathrm{V})
\end{aligned}
$$

$$
(d \psi)(\mathrm{U}, \mathrm{~V}, \mathrm{~W})=\mathrm{U} \psi(\mathrm{~V}, \mathrm{~W})+\mathrm{W} \psi(\mathrm{U}, \mathrm{~V})+\mathrm{V} \psi(\mathrm{~W}, \mathrm{U})
$$

$$
-\psi([\mathrm{U}, \mathrm{~V}], \mathrm{W})-\psi([\mathrm{W}, \mathrm{U}], \mathrm{V})-\psi([\mathrm{V}, \mathrm{~W}], \mathrm{U})
$$

Exterior Derivative, revisited.
Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Similar formulæ for $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$.

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Similar formulæ for $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$.
Proof of concept:

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Similar formulæ for $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$.
Proof of concept:

$$
\left.\vee\lrcorner d \varphi=\mathcal{L}_{\mathrm{V}} \varphi-d(\mathrm{~V}\lrcorner \varphi\right)
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Similar formulæ for $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$.
Proof of concept:

$$
\left.\mathrm{V}\lrcorner d \varphi=\mathcal{L}_{\mathrm{V} \varphi}-d(\mathrm{~V}\lrcorner \varphi\right)
$$

Reduces

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

to

$$
d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)
$$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.
Similar formulæ for $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$.
Proof of concept:

$$
\left.\mathrm{V}\lrcorner d \varphi=\mathcal{L}_{\mathrm{V} \varphi}-d(\mathrm{~V}\lrcorner \varphi\right)
$$

Reduces

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

to

$$
d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)
$$

Induction!

Orientations.

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0;

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

$$
\left(\left[\begin{array}{c}
\mathrm{V}_{1}^{1} \\
\mathrm{~V}_{1}^{2} \\
\vdots \\
\mathrm{~V}_{1}^{n}
\end{array}\right],\left[\begin{array}{c}
\mathrm{V}_{2}^{1} \\
\mathrm{~V}_{2}^{2} \\
\vdots \\
\mathrm{~V}_{2}^{n}
\end{array}\right], \cdots,\left[\begin{array}{c}
\mathrm{V}_{n}^{1} \\
\mathrm{~V}_{n}^{2} \\
\vdots \\
\mathrm{~V}_{n}^{n}
\end{array}\right]\right) \longmapsto\left|\begin{array}{cccc}
\mathrm{V}_{1}^{1} & \mathrm{~V}_{2}^{1} & \cdots & \mathrm{~V}_{n}^{1} \\
\mathrm{~V}_{1}^{2} & \mathrm{~V}_{2}^{2} & \cdots & \mathrm{~V}_{n}^{2} \\
\vdots & \vdots & & \vdots \\
\mathrm{~V}_{1}^{n} & \mathrm{~V}_{2}^{n} & \cdots & \mathrm{~V}_{n}^{n}
\end{array}\right|
$$

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

$$
\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{n}\right) \longmapsto\left(e^{1} \wedge e^{2} \wedge \cdots \wedge e^{n}\right)\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{n}\right)
$$

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases;

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases;

$$
\left(e^{1} \wedge \cdots \wedge e^{n}\right)\left(\vee_{1}, \vee_{2}, \ldots, \vee_{n}\right)>0
$$

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases; and
- The anti-oriented bases.

$$
\left(e^{1} \wedge \cdots \wedge e^{n}\right)\left(\vee_{1}, \vee_{2}, \ldots, \vee_{n}\right)>0
$$

Orientations.

The group $\mathbf{G L}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det >0; and
- The matrices with det <0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases; and
- The anti-oriented bases.

$$
\begin{aligned}
& \left(e^{1} \wedge \cdots \wedge e^{n}\right)\left(\mathrm{V}_{1}, \vee_{2}, \ldots, \vee_{n}\right)>0 \\
& \left(e^{1} \wedge \cdots \wedge e^{n}\right)\left(\vee_{1}, \vee_{2}, \ldots, \vee_{n}\right)<0
\end{aligned}
$$

Orientations.

Orientations.
Definition.

Orientations.
Definition. A smooth n-manifold

Orientations.
Definition. A smooth n-manifold is said to be orientable

Orientations.
Definition. A smooth n-manifold is said to be orientable if it admits an atlas

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Theorem.

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff it carries a smooth n-form $\omega \in \Omega^{n}(M)$

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff it carries a smooth n-form $\omega \in \Omega^{n}(M)$ which is everywhere non-zero:

Orientations.

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}{ }^{-1}$ have Jacobian matrices of positive determinant:

$$
\operatorname{det} d\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)>0
$$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff it carries a smooth n-form $\omega \in \Omega^{n}(M)$ which is everywhere non-zero:

$$
\omega \neq 0 .
$$

Two such forms

Two such forms determine the same orientation

Two such forms determine the same orientation \Leftrightarrow

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$.

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$. Theorem.

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$.
Theorem. Smooth n-manifold M orientable

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$.
Theorem. Smooth n-manifold M orientable \Leftrightarrow

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$.
Theorem. Smooth n-manifold M orientable \Leftrightarrow

$$
\Lambda^{n} T^{*} M \rightarrow M
$$

Two such forms determine the same orientation \Leftrightarrow

$$
\tilde{\omega}=f \omega
$$

for some smooth positive function $f: M \rightarrow \mathbb{R}^{+}$.
Theorem. Smooth n-manifold M orientable \Leftrightarrow

$$
\Lambda^{n} T^{*} M \rightarrow M
$$

is trivial as a vector bundle.

