MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

April 21, 2020

Lie derivative of tensor field φ w/resp. to V:

arphi

 $\Phi_t^*\varphi$

 $\frac{d}{dt}\Phi_t^*\varphi$

 $\left. \frac{d}{dt} \Phi_t^* \varphi \right|_{t=0}$

$$\mathcal{L}_{\mathbf{V}}\varphi := \frac{d}{dt}\Phi_t^*\varphi\Big|_{t=0}$$

$$\mathcal{L}_{\mathbf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of **V**.

$$\mathcal{L}_{\mathbf{V}}\varphi := \frac{d}{dt}\Phi_t^*\varphi\Big|_{t=0}$$

where Φ_t is the flow of **V**.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$,

$$\mathcal{L}_{\mathbf{V}}\varphi := \frac{d}{dt}\Phi_t^*\varphi\Big|_{t=0}$$

where Φ_t is the flow of V.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$, this can be computed via the following Leibniz rule:

$$\mathcal{L}_{\mathbf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of V.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$, this can be computed via the following Leibniz rule:

$$\begin{aligned} \left(\mathcal{L}_{\mathbf{V}} \varphi \right) \left(\mathbf{W}_{1}, \dots, \mathbf{W}_{k} \right) &= \mathcal{L}_{\mathbf{V}} \left[\varphi (\mathbf{W}_{1}, \dots, \mathbf{W}_{k}) \right] \\ &- \varphi (\mathcal{L}_{\mathbf{V}} \mathbf{W}_{1}, \dots, \mathbf{W}_{k}) \\ &\cdots - \varphi (\mathbf{W}_{1}, \dots, \mathcal{L}_{\mathbf{V}} \mathbf{W}_{k}) \end{aligned}$$

$$\mathcal{L}_{\mathbf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of V.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$, this can be computed via the following Leibniz rule:

$$\begin{aligned} \left(\mathcal{L}_{\mathbf{V}} \varphi \right) \left(\mathsf{W}_{1}, \dots, \mathsf{W}_{k} \right) &= \mathcal{L}_{\mathbf{V}} \left[\varphi(\mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \right] \\ &\quad -\varphi(\mathcal{L}_{\mathbf{V}} \mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \\ &\quad \cdots - \varphi(\mathsf{W}_{1}, \dots, \mathcal{L}_{\mathbf{V}} \mathsf{W}_{k}) \\ &= \mathbf{V} \left[\varphi(\mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \right] \\ &\quad -\varphi([\mathsf{V}, \mathsf{W}_{1}], \dots, \mathsf{W}_{k}) \\ &\quad \cdots - \varphi(\mathsf{W}_{1}, \dots, [\mathsf{V}, \mathsf{W}_{k}]) \end{aligned}$$

$$\mathcal{L}_{\mathbf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of V.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$, this can be computed via the following Leibniz rule:

$$\begin{aligned} \left(\mathcal{L}_{\mathbf{V}} \varphi \right) \left(\mathbf{W}_{1}, \dots, \mathbf{W}_{k} \right) &= \mathcal{L}_{\mathbf{V}} \left[\varphi (\mathbf{W}_{1}, \dots, \mathbf{W}_{k}) \right] \\ &\quad -\varphi (\mathcal{L}_{\mathbf{V}} \mathbf{W}_{1}, \dots, \mathbf{W}_{k}) \\ &\quad \cdots - \varphi (\mathbf{W}_{1}, \dots, \mathcal{L}_{\mathbf{V}} \mathbf{W}_{k}) \\ &= \mathbf{V} \left[\varphi (\mathbf{W}_{1}, \dots, \mathbf{W}_{k}) \right] \\ &\quad -\varphi ([\mathbf{V}, \mathbf{W}_{1}], \dots, \mathbf{W}_{k}) \\ &\quad \cdots - \varphi (\mathbf{W}_{1}, \dots, [\mathbf{V}, \mathbf{W}_{k}]) \end{aligned}$$

This is from the usual Leibniz rule for $\frac{d}{dt}$

$$\mathcal{L}_{\mathbf{V}}\varphi := \left.\frac{d}{dt}\Phi_t^*\varphi\right|_{t=0}$$

where Φ_t is the flow of V.

For $\varphi \in \Omega^k(M)$, or more generally $\varphi \in \Gamma(\otimes^k T^*M)$, this can be computed via the following Leibniz rule:

$$\begin{aligned} \left(\mathcal{L}_{\mathbf{V}} \varphi \right) \left(\mathsf{W}_{1}, \dots, \mathsf{W}_{k} \right) &= \mathcal{L}_{\mathbf{V}} \left[\varphi(\mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \right] \\ &\quad -\varphi(\mathcal{L}_{\mathbf{V}} \mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \\ &\quad \cdots - \varphi(\mathsf{W}_{1}, \dots, \mathcal{L}_{\mathbf{V}} \mathsf{W}_{k}) \\ &= \mathbf{V} \left[\varphi(\mathsf{W}_{1}, \dots, \mathsf{W}_{k}) \right] \\ &\quad -\varphi([\mathsf{V}, \mathsf{W}_{1}], \dots, \mathsf{W}_{k}) \\ &\quad \cdots - \varphi(\mathsf{W}_{1}, \dots, [\mathsf{V}, \mathsf{W}_{k}]) \end{aligned}$$

This is from the usual Leibniz rule for $\frac{d}{dt}$ acting on functions of t with values in fixed vector space.

For example, if $\varphi \in \Omega^1(M)$,

For example, if $\varphi \in \Omega^1(M)$,

$$\left(\mathcal{L}_{\mathbf{V}}\varphi\right)(\mathbf{W}) = \mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right])$$

For example, if $\varphi \in \Omega^1(M)$,

$$\left(\mathcal{L}_{\mathbf{V}}\varphi\right)(\mathbf{W}) = \mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right])$$

Or, if $\varphi \in \Omega^2(M)$,

For example, if $\varphi \in \Omega^1(M)$,

 $\left(\mathcal{L}_{\mathsf{V}}\varphi\right)(\mathsf{W}) = \mathsf{V}\left[\varphi(\mathsf{W})\right] - \varphi([\mathsf{V},\mathsf{W}])$

Or, if $\varphi \in \Omega^2(M)$, $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{U},\mathbf{W}) = \mathbf{V}[\varphi(\mathbf{U},\mathbf{W})] - \varphi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \varphi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

For example, if $\varphi \in \Omega^1(M)$,

 $\left(\mathcal{L}_{\mathbf{V}}\varphi\right)(\mathbf{W}) = \mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right])$

Or, if $\varphi \in \Omega^2(M)$, $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{U},\mathbf{W}) = \mathbf{V}[\varphi(\mathbf{U},\mathbf{W})] - \varphi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \varphi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

Useful and clarifying.

For example, if $\varphi \in \Omega^1(M)$,

 $\left(\mathcal{L}_{\mathbf{V}}\varphi\right)(\mathbf{W}) = \mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right])$

Or, if $\varphi \in \Omega^2(M)$, $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{U},\mathbf{W}) = \mathbf{V}[\varphi(\mathbf{U},\mathbf{W})] - \varphi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \varphi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

Useful and clarifying.

But there is a more efficient formula!

Cartan's Magic Formula:

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Here \square denotes contraction:

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Here \square denotes contraction:

$$(\mathbf{V} \sqcup \psi)(\underline{\quad}, \ldots, \underline{\quad}) := \psi(\mathbf{V}, \underline{\quad}, \ldots, \underline{\quad}).$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

For example, if $\varphi \in \Omega^1(M)$,

$$\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V},\underline{}) + d[\varphi(\mathbf{V})].$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $\mathbf{V} \neq 0$,

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

In these coordinates, the flow Φ_t of V is given by

$$\Phi_t(x^1,\ldots,x^n) = (x^1 + t,\ldots,x^n),$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

In these coordinates, the flow Φ_t of V is given by

$$\Phi_t(x^1,\ldots,x^n) = (x^1 + t,\ldots,x^n),$$

 \mathbf{SO}

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

In these coordinates, the flow Φ_t of V is given by

$$\Phi_t(x^1,\ldots,x^n) = (x^1 + t,\ldots,x^n),$$

SO

$$\Phi_t^*\left(\sum \varphi_I(x^1,\ldots,x^n)dx^I\right) = \sum \varphi_I(x^1+t,\ldots,x^n)dx^I$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

In these coordinates, the flow Φ_t of V is given by

$$\Phi_t(x^1,\ldots,x^n) = (x^1 + t,\ldots,x^n),$$

SO

$$\Phi_t^* \left(\sum \varphi_I(x^1, \dots, x^n) dx^I \right) = \sum \varphi_I(x^1 + t, \dots, x^n) dx^I$$

and hence

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Near any point where $V \neq 0$, choose coordinates in which $V = \frac{\partial}{\partial x^1}$.

In these coordinates, the flow Φ_t of V is given by

$$\Phi_t(x^1,\ldots,x^n) = (x^1 + t,\ldots,x^n),$$

SO

$$\Phi_t^*\left(\sum \varphi_I(x^1,\ldots,x^n)dx^I\right) = \sum \varphi_I(x^1+t,\ldots,x^n)dx^I$$

and hence

$$\mathcal{L}_{\mathsf{V}}\left(\sum \varphi_{I} dx^{I}\right) = \sum \frac{\partial \varphi_{I}}{\partial x^{1}} dx^{I}.$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^{i_1} \wedge \dots \wedge dx^{i_k}$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$ where $1 \notin I = \{i_1, \dots, i_k\}.$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

where $1 \notin I$. Then

 $\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) \, = \,$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathbf{V} \,\lrcorner\, d\varphi + d(\mathbf{V} \,\lrcorner\, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner\, d\left(f dx^I\right) + d\left(\frac{\partial}{\partial x^1} \,\lrcorner\, [f dx^I]\right)$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathbf{V} \,\lrcorner \, d\varphi + d(\mathbf{V} \,\lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner \, d\left(f dx^I\right) + d\left(\frac{\partial}{\partial x^1} \,\lrcorner \, [f dx^I]\right)$$
$$= \frac{\partial}{\partial x^1} \,\lrcorner \, \left(df \wedge dx^I\right) + \mathbf{0}$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathbf{V} \,\lrcorner \, d\varphi + d(\mathbf{V} \,\lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner \, d\left(fdx^I\right) + d\left(\frac{\partial}{\partial x^1} \,\lrcorner \, [fdx^I]\right)$$
$$= \frac{\partial}{\partial x^1} \,\lrcorner \, \sum_j \frac{\partial f}{\partial x^j} dx^j \wedge dx^I + \mathbf{0}$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \lrcorner \, d\left(f dx^I\right) + d\left(\frac{\partial}{\partial x^1} \lrcorner \, [f dx^I]\right)$$

$$= \frac{\partial}{\partial x^1} \lrcorner \, \sum_j \frac{\partial f}{\partial x^j} dx^j \wedge dx^I + \mathbf{0}$$

$$= \frac{\partial f}{\partial x^1} dx^I$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Now, consider the special case $\varphi = f(x^1, \dots, x^n) dx^I$

$$\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \lrcorner \, d\left(f dx^I\right) + d\left(\frac{\partial}{\partial x^1} \lrcorner \, [f dx^I]\right)$$

$$= \frac{\partial}{\partial x^1} \lrcorner \, \sum_j \frac{\partial f}{\partial x^j} dx^j \wedge dx^I + \mathbf{0}$$

$$= \frac{\partial f}{\partial x^1} dx^I = \mathcal{L}_{\mathbf{V}} \varphi$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$ where $1 \notin J$.

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

where $1 \notin J$. Then

 $\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) \, = \,$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \lrcorner \, d\left(fdx^1 \land dx^J\right) \\ + d\left(\frac{\partial}{\partial x^1} \lrcorner \, [fdx^1 \land dx^J]\right)$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \,\lrcorner\, d\varphi + d(\mathbf{V} \,\lrcorner\, \varphi) \,=\, \frac{\partial}{\partial x^1} \,\lrcorner\, d\left(f dx^1 \wedge dx^J\right) + d\left(f dx^J\right)$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \,\lrcorner\, d\varphi + d(\mathbf{V} \,\lrcorner\, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner\, d\left(f dx^1 \wedge dx^J\right) + d\left(f dx^J\right)$$
$$= \frac{\partial}{\partial x^1} \,\lrcorner\, \left(df \wedge dx^1 \wedge dx^J\right) + df \wedge dx^J$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \,\lrcorner\, d\varphi + d(\mathbf{V} \,\lrcorner\, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner\, d\left(fdx^1 \wedge dx^J\right) + d\left(fdx^J\right)$$
$$= -\frac{\partial}{\partial x^1} \,\lrcorner\, \left(dx^1 \wedge df \wedge dx^J\right) + df \wedge dx^J$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \,\lrcorner \, d\varphi + d(\mathbf{V} \,\lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner \, d\left(f dx^1 \wedge dx^J\right) + d\left(f dx^J\right)$$

$$= -\frac{\partial}{\partial x^1} \,\lrcorner \, \left(dx^1 \wedge df \wedge dx^J\right) + df \wedge dx^J$$

$$= -\sum_{i \neq 1} \frac{\partial f}{\partial x^i} dx^i \wedge dx^J + \sum_i \frac{\partial f}{\partial x^i} dx^i \wedge dx^J$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \,\lrcorner \, d\varphi + d(\mathbf{V} \,\lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \,\lrcorner \, d\left(f dx^1 \wedge dx^J\right) + d\left(f dx^J\right)$$

$$= -\frac{\partial}{\partial x^1} \,\lrcorner \, \left(dx^1 \wedge df \wedge dx^J\right) + df \wedge dx^J$$

$$= -\sum_{i \neq 1} \frac{\partial f}{\partial x^i} dx^i \wedge dx^J + \sum_i \frac{\partial f}{\partial x^i} dx^i \wedge dx^J$$

$$= \frac{\partial f}{\partial x^1} dx^1 \wedge dx^J$$

$$\mathcal{L}_{\mathsf{V}}\varphi = \mathsf{V} \lrcorner \, d\varphi + d(\mathsf{V} \lrcorner \, \varphi).$$

Proof. Next, consider the special case $\varphi = f(x^1, \dots, x^n) dx^1 \wedge dx^J$

$$\mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi) = \frac{\partial}{\partial x^1} \lrcorner \, d\left(f dx^1 \land dx^J\right) + d\left(f dx^J\right)$$

$$= -\frac{\partial}{\partial x^1} \lrcorner \, \left(dx^1 \land df \land dx^J\right) + df \land dx^J$$

$$= -\sum_{i \neq 1} \frac{\partial f}{\partial x^i} dx^i \land dx^J + \sum_i \frac{\partial f}{\partial x^i} dx^i \land dx^J$$

$$= \frac{\partial f}{\partial x^1} dx^1 \land dx^J = \mathcal{L}_{\mathbf{V}} \varphi$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms,

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms,

$$f dx^I, \qquad f dx^1 \wedge dx^J$$

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms,

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq 0$.

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq 0$.

By continuity, also true on the closure of this set.

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq \mathbf{0}$.

By continuity, also true on the closure of this set.

But the complement of this closure is an open set on which $V \equiv 0$.

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq \mathbf{0}$.

By continuity, also true on the closure of this set.

But the complement of this closure is an open set on which $V \equiv 0$. Formula holds on this complement because both sides vanish there.

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq 0$.

By continuity, also true on the closure of this set.

But the complement of this closure is an open set on which $V \equiv 0$. Formula holds on this complement because both sides vanish there.

Hence Cartan's magic formula holds on all of M.

$$\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi).$$

Proof. Since the general φ is a finite sum of such terms, we have thus proved Cartan's magic formula on the open set where $\mathbf{V} \neq 0$.

By continuity, also true on the closure of this set.

But the complement of this closure is an open set on which $V \equiv 0$. Formula holds on this complement because both sides vanish there.

Hence Cartan's magic formula holds on all of M. QEI Exterior Derivative, revisited.

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Exterior Derivative, revisited. Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\varphi \in \Omega^1(M)$,

Exterior Derivative, revisited. Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\varphi \in \Omega^1(M)$,

 $\mathcal{L}_{\mathbf{V}}\varphi = \mathbf{V} \lrcorner \, d\varphi + d(\mathbf{V} \lrcorner \, \varphi)$

Exterior Derivative, revisited.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\varphi \in \Omega^1(M)$,

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V}, _) + d[\varphi(\mathbf{V})]$

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V}, \underline{}) + d[\varphi(\mathbf{V})]$

 $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{W}) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V},\underline{}) + d[\varphi(\mathbf{V})]$

 $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{W}) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right]) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V},\underline{}) + d[\varphi(\mathbf{V})]$

 $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{W}) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathbf{V}\varphi(\mathbf{W}) - \varphi([\mathbf{V},\mathbf{W}]) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V},\underline{}) + d[\varphi(\mathbf{V})]$

 $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{W}) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathbf{V}\varphi(\mathbf{W}) - \varphi([\mathbf{V},\mathbf{W}]) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

$$(d\varphi)(\mathsf{V},\mathsf{W}) = \mathsf{V}\varphi(\mathsf{W}) - \mathsf{W}\varphi(\mathsf{V}) - \varphi([\mathsf{V},\mathsf{W}])$$

 $\mathcal{L}_{\mathbf{V}}\varphi = (d\varphi)(\mathbf{V},\underline{}) + d[\varphi(\mathbf{V})]$

 $(\mathcal{L}_{\mathbf{V}}\varphi)(\mathbf{W}) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

 $\mathbf{V}\left[\varphi(\mathbf{W})\right] - \varphi(\left[\mathbf{V},\mathbf{W}\right]) = (d\varphi)(\mathbf{V},\mathbf{W}) + \mathbf{W}\varphi(\mathbf{V})$

$$(d\varphi)(\mathbf{V},\mathbf{W}) = \mathbf{V}\varphi(\mathbf{W}) - \mathbf{W}\varphi(\mathbf{V}) - \varphi([\mathbf{V},\mathbf{W}])$$

Exercise: RHS is actually bilinear over $C^{\infty}(M)$...

Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^2(M)$,

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^2(M)$,

 $\mathcal{L}_{\mathbf{V}}\psi = \mathbf{V} \, \mathbf{J} \, d\psi + d(\mathbf{V} \, \mathbf{J} \, \psi)$

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^2(M)$,

$$\mathbf{V} \, \mathbf{d} \psi = \mathcal{L}_{\mathbf{V}} \psi - d(\mathbf{V} \, \mathbf{d} \, \psi)$$

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^2(M)$,

 $[\mathbf{V} \lrcorner \, d\psi](\mathbf{U}, \mathbf{W}) = [\mathcal{L}_{\mathbf{V}} \psi](\mathbf{U}, \mathbf{W}) - [d(\mathbf{V} \lrcorner \, \psi)](\mathbf{U}, \mathbf{W})$

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Example. If $\psi \in \Omega^2(M)$,

 $(d\psi)(\mathbf{V},\mathbf{U},\mathbf{W}) = [\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) - [d(\mathbf{V} \lrcorner \psi)](\mathbf{U},\mathbf{W})$

 $(d\psi)(\mathbf{V},\mathbf{U},\mathbf{W}) = [\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) - [d(\mathbf{V} \lrcorner \psi)](\mathbf{U},\mathbf{W})$

 $[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{U},\mathbf{W}) - \psi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \psi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

 $[d\varphi](\mathsf{U},\mathsf{W}) = \mathsf{U}\left[\varphi(\mathsf{W})\right] - \mathsf{W}\varphi(\mathsf{U}) - \varphi([\mathsf{U},\mathsf{W}])$

 $(d\psi)(\mathbf{V},\mathbf{U},\mathbf{W}) = [\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) - [d(\mathbf{V} \lrcorner \psi)](\mathbf{U},\mathbf{W})$

 $[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{U},\mathbf{W}) - \psi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \psi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

 $[d(\mathbf{V} \sqcup \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\left[(\mathbf{V} \sqcup \psi)(\mathbf{W})\right] - \mathbf{W}\left[(\mathbf{V} \sqcup \psi)(\mathbf{U})\right] - (\mathbf{V} \sqcup \psi)([\mathbf{U}, \mathbf{W}])$

 $(d\psi)(\mathsf{V},\mathsf{U},\mathsf{W}) = [\mathcal{L}_{\mathsf{V}}\psi](\mathsf{U},\mathsf{W}) - [d(\mathsf{V} \lrcorner \psi)](\mathsf{U},\mathsf{W})$

 $[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{U},\mathbf{W}) - \psi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \psi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

 $[d(\mathbf{V} \lrcorner \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\psi(\mathbf{V}, \mathbf{W}) - \mathbf{W}\psi(\mathbf{V}, \mathbf{U}) - \psi(\mathbf{V}, [\mathbf{U}, \mathbf{W}])$

 $(d\psi)(\mathsf{U},\mathsf{V},\mathsf{W}) = -[\mathcal{L}_{\mathsf{V}}\psi](\mathsf{U},\mathsf{W}) + [d(\mathsf{V} \lrcorner \psi)](\mathsf{U},\mathsf{W})$

 $[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{U},\mathbf{W}) - \psi([\mathbf{V},\mathbf{U}],\mathbf{W}) - \psi(\mathbf{U},[\mathbf{V},\mathbf{W}])$

 $[d(\mathbf{V} \lrcorner \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\psi(\mathbf{V}, \mathbf{W}) - \mathbf{W}\psi(\mathbf{V}, \mathbf{U}) - \psi(\mathbf{V}, [\mathbf{U}, \mathbf{W}])$

 $(d\psi)(\mathsf{U},\mathsf{V},\mathsf{W}) = -[\mathcal{L}_{\mathsf{V}}\psi](\mathsf{U},\mathsf{W}) + [d(\mathsf{V} \lrcorner \psi)](\mathsf{U},\mathsf{W})$

 $-[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{W},\mathbf{U}) - \psi([\mathbf{U},\mathbf{V}],\mathbf{W}) - \psi([\mathbf{V},\mathbf{W}],\mathbf{U})$

 $[d(\mathbf{V} \lrcorner \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\psi(\mathbf{V}, \mathbf{W}) - \mathbf{W}\psi(\mathbf{V}, \mathbf{U}) - \psi(\mathbf{V}, [\mathbf{U}, \mathbf{W}])$

 $(d\psi)(\mathsf{U},\mathsf{V},\mathsf{W}) = -[\mathcal{L}_{\mathsf{V}}\psi](\mathsf{U},\mathsf{W}) + [d(\mathsf{V} \lrcorner \psi)](\mathsf{U},\mathsf{W})$

 $-[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{W},\mathbf{U}) - \psi([\mathbf{U},\mathbf{V}],\mathbf{W}) - \psi([\mathbf{V},\mathbf{W}],\mathbf{U})$

 $[d(\mathbf{V} \sqcup \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\psi(\mathbf{V}, \mathbf{W}) + \mathbf{W}\psi(\mathbf{U}, \mathbf{V}) - \psi([\mathbf{W}, \mathbf{U}], \mathbf{V})$

 $(d\psi)(\mathsf{U},\mathsf{V},\mathsf{W}) = -[\mathcal{L}_{\mathsf{V}}\psi](\mathsf{U},\mathsf{W}) + [d(\mathsf{V} \lrcorner \psi)](\mathsf{U},\mathsf{W})$

 $-[\mathcal{L}_{\mathbf{V}}\psi](\mathbf{U},\mathbf{W}) = \mathbf{V}\psi(\mathbf{W},\mathbf{U}) - \psi([\mathbf{U},\mathbf{V}],\mathbf{W}) - \psi([\mathbf{V},\mathbf{W}],\mathbf{U})$

 $[d(\mathbf{V} \sqcup \psi)](\mathbf{U}, \mathbf{W}) = \mathbf{U}\psi(\mathbf{V}, \mathbf{W}) + \mathbf{W}\psi(\mathbf{U}, \mathbf{V}) - \psi([\mathbf{W}, \mathbf{U}], \mathbf{V})$

 $\begin{aligned} (d\psi)(\mathsf{U},\mathsf{V},\mathsf{W}) \,=\, \mathsf{U}\psi(\mathsf{V},\mathsf{W}) + \mathsf{W}\psi(\mathsf{U},\mathsf{V}) + \mathsf{V}\psi(\mathsf{W},\mathsf{U}) \\ &- \psi([\mathsf{U},\mathsf{V}],\mathsf{W}) - \psi([\mathsf{W},\mathsf{U}],\mathsf{V}) - \psi([\mathsf{V},\mathsf{W}],\mathsf{U}) \end{aligned}$

Cartan's magic formula \Rightarrow intrinsic formulæ for d.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Similar formulæ for $d: \Omega^k(M) \to \Omega^{k+1}(M)$.

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Similar formulæ for $d : \Omega^k(M) \to \Omega^{k+1}(M)$. Proof of concept:

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Similar formulæ for $d : \Omega^k(M) \to \Omega^{k+1}(M)$. Proof of concept:

$$\mathsf{V} \lrcorner \, d\varphi = \mathcal{L}_{\mathsf{V}} \varphi - d(\mathsf{V} \lrcorner \, \varphi)$$

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Similar formulæ for $d : \Omega^k(M) \to \Omega^{k+1}(M)$. Proof of concept:

$$\mathsf{V} \lrcorner \, d\varphi = \mathcal{L}_{\mathsf{V}} \varphi - d(\mathsf{V} \lrcorner \, \varphi)$$

Reduces

$$d:\Omega^k(M)\to \Omega^{k+1}(M)$$

to

$$d: \Omega^{k-1}(M) \to \Omega^k(M).$$

Cartan's magic formula \Rightarrow intrinsic formulæ for d. Similar formulæ for $d : \Omega^k(M) \to \Omega^{k+1}(M)$. Proof of concept:

$$\mathbf{V} \lrcorner \, d\varphi = \mathcal{L}_{\mathbf{V}} \varphi - d(\mathbf{V} \lrcorner \, \varphi)$$

Reduces

$$d:\Omega^k(M)\to \Omega^{k+1}(M)$$

to

$$d: \Omega^{k-1}(M) \to \Omega^k(M).$$

Induction!

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

• The matrices with det > 0;

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

$$\begin{pmatrix} \begin{bmatrix} \mathsf{V}_1^1 \\ \mathsf{V}_2^2 \\ \vdots \\ \mathsf{V}_1^n \end{bmatrix}, \begin{bmatrix} \mathsf{V}_2^1 \\ \mathsf{V}_2^2 \\ \vdots \\ \mathsf{V}_n^n \end{bmatrix}, \cdots, \begin{bmatrix} \mathsf{V}_n^1 \\ \mathsf{V}_n^2 \\ \vdots \\ \mathsf{V}_n^n \end{bmatrix} \end{pmatrix} \longmapsto \begin{pmatrix} \mathsf{V}_1^1 & \mathsf{V}_2^1 & \cdots & \mathsf{V}_n^1 \\ \mathsf{V}_2^1 & \mathsf{V}_2^2 & \cdots & \mathsf{V}_n^2 \\ \vdots & \vdots & \vdots \\ \mathsf{V}_n^n & \mathsf{V}_n^n & \mathsf{V}_1^n & \mathsf{V}_2^n & \cdots & \mathsf{V}_n^n \end{pmatrix}$$

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

 $(\mathsf{V}_1,\mathsf{V}_2,\ldots,\mathsf{V}_n)\longmapsto (e^1\wedge e^2\wedge\cdots\wedge e^n)(\mathsf{V}_1,\mathsf{V}_2,\ldots,\mathsf{V}_n)$

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

• The oriented bases;

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

• The oriented bases;

$$(e^1 \wedge \cdots \wedge e^n)(\mathsf{V}_1, \mathsf{V}_2, \dots, \mathsf{V}_n) > 0$$

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases; and
- The anti-oriented bases.

$$(e^1 \wedge \cdots \wedge e^n)(\mathsf{V}_1, \mathsf{V}_2, \dots, \mathsf{V}_n) > 0$$

The group $\mathbf{GL}(n, \mathbb{R})$ of invertible $n \times n$ matrices has exactly two connected components:

- The matrices with det > 0; and
- The matrices with det < 0.

This means that there are exactly two connected components for the bases of an n-dimensional real vector space:

- The oriented bases; and
- The anti-oriented bases.

$$(e^{1} \wedge \dots \wedge e^{n})(\mathsf{V}_{1}, \mathsf{V}_{2}, \dots, \mathsf{V}_{n}) > 0$$
$$(e^{1} \wedge \dots \wedge e^{n})(\mathsf{V}_{1}, \mathsf{V}_{2}, \dots, \mathsf{V}_{n}) < 0$$

Orientations. Definition.

Definition. A smooth n-manifold

Definition. A smooth n-manifold is said to be orientable

Definition. A smooth n-manifold is said to be orientable if it admits an atlas

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

Definition. A smooth n-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Theorem.

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth n-manifold is orientable iff it carries a smooth n-form $\omega \in \Omega^n(M)$

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth *n*-manifold is orientable iff it carries a smooth *n*-form $\omega \in \Omega^n(M)$ which is everywhere non-zero:

Definition. A smooth *n*-manifold is said to be orientable if it admits an atlas for which all the transition functions $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$ have Jacobian matrices of positive determinant:

 $\det d(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}) > 0.$

Definition. An orientation for M is a maximal atlas with this property.

Theorem. A smooth *n*-manifold is orientable iff it carries a smooth *n*-form $\omega \in \Omega^n(M)$ which is everywhere non-zero:

 $\omega \neq 0.$

Two such forms

Two such forms determine the same orientation

$$\tilde{\omega} = f\omega$$

$$\tilde{\omega} = f\omega$$

for some smooth positive function $f: M \to \mathbb{R}^+$.

$$\tilde{\omega} = f\omega$$

for some smooth positive function $f: M \to \mathbb{R}^+$.

Theorem.

$$\tilde{\omega} = f\omega$$

for some smooth positive function $f: M \to \mathbb{R}^+$.

Theorem. Smooth n-manifold M orientable

$$\tilde{\omega} = f\omega$$

for some smooth positive function $f: M \to \mathbb{R}^+$.

Theorem. Smooth *n*-manifold M orientable \Leftrightarrow

 $\tilde{\omega} = f\omega$

for some smooth positive function $f: M \to \mathbb{R}^+$.

Theorem. Smooth *n*-manifold M orientable \Leftrightarrow $\Lambda^n T^* M \to M$

 $\tilde{\omega} = f\omega$

for some smooth positive function $f: M \to \mathbb{R}^+$.

Theorem. Smooth *n*-manifold M orientable \Leftrightarrow $\Lambda^n T^*M \to M$

is trivial as a vector bundle.