
MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun
Stony Brook University

April 2, 2020

1



If V ∈ X(M), we say that

2



If V ∈ X(M), we say that

γ : (−ε, ε)→M

3



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

4



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

5



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

6



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

7



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

8



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

9



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

with γ(0) = p, for some ε > 0. Moreover, if V
is compactly supported, one can take ε =∞:

10



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

with γ(0) = p, for some ε > 0. Moreover, if V
is compactly supported, one can take ε =∞:

11



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

with γ(0) = p, for some ε > 0. Moreover, if V
is compactly supported, one can take ε =∞:

12



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

with γ(0) = p, for some ε > 0. Moreover, if V
is compactly supported, one can take ε =∞:

13



If V ∈ X(M), we say that

γ : (−ε, ε)→M

is an integral curve of V if

d

dt
γ(t) = V |γ(t)

for all t ∈ (−ε, ε).

Theorem. Given any V ∈ X(M) and any p ∈
M , there exists a unique integral curve

γ : (−ε, ε)→M

with γ(0) = p, for some ε > 0. Moreover, if V
is compactly supported, one can take ε =∞:

γ : R→M.
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Recall that V ∈ X(M) compactly supported⇐⇒
supp V := {p ∈M | V (p) 6= 0}

is compact. Automatic if M is compact manifold!

=⇒ every integral curve can be extended to

γ : R→M

For each t ∈ R, can then define a smooth map

Φt : M →M

by setting

Φt(p) = γp(t) where γp unique integral curve with γp(0) = p.

We can also define a smooth map

Φ : M × R→M

by setting
Φ(p, t) = Φt(p).

This map is called the flow of V .
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Theorem. Given any compactly supported V ∈
X(M), the maps

Φt : M →M

are all diffeomorphisms, and satisfy

Φ0 = idM

Φu ◦ Φt = Φu+t.

Thus, these form a one-parameter group of dif-
feomorphisms M →M .

Notice that
Φ−t = (Φt)

−1

When V not compactly supported, “flow” only
defined on neighborhood of M × {0} ⊂M × R:

Φ : M × R 99KM

where dashed arrow means “not defined everywhere.”
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M be a point where V (p) 6= 0. Then the exists a
smooth coordinate chart (x1, . . . , xn) defined on
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V =
∂

∂x1
.

Remark. Of course, since ∂
∂x1 6= 0 everywhere,

this can actually be done if and only if V (p) 6= 0!
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∂
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.

Proof. LetN ⊂M be an embedded (n− 1)-dim’l
submanifold through p such that V (p) /∈ TpN .

Restrict flow Φ : M ×R 99KM of V to N ×R to
define smooth map

F : N × R 99KM.

Inverse function theorem: local diffeo near p. In-
troduce local coordinates (x2, . . . , xn) on N , set
x1 = t on R, pull back to U ⊂M via F−1. 2
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Φt = flow of V .
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[V ,W ] = 0 ⇐⇒ Φ∗tW = W ∀t.

Proof.
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d

dt
(Φ∗tW )

∣∣∣∣
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Corollary. Let V ,W ∈ X(M), and let

Φt = flow of V .

Then

[V ,W ] = 0 ⇐⇒ Φ∗tW = W ∀t.

Proof.
LVW = [V ,W ],

and, because Φu ◦ Φt = Φu+t,

LVW :=
d

dt
(Φ∗tW )

∣∣∣∣
t=0

=⇒

Φ∗uLVW :=
d

dt
(Φ∗tW )

∣∣∣∣
t=u

.
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Theorem. Let V ,W ∈ X(M), and set

Φt = flow of V , and Ψu = flow of W.

Then

[V ,W ] = 0 ⇐⇒ Φt ◦ Ψu = Ψu ◦ Φt ∀u, t.

Proof. For a fixed value of t, the family of diffeo-
morphisms

Πu := Φ−1
t ◦ Ψu ◦ Φt.

Then Π0 = idM , and, for any p,

d

du
Πu(p) = Φ∗tW |Πu(p) .

Thus, Πu is flow of Φ∗tW , and

Φ∗tW = W ⇐⇒ Φ−1
t ◦ Ψu ◦ Φt = Ψu ∀u.
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Theorem. Let V ,W ∈ X(M), and set

Φt = flow of V , and Ψu = flow of W.

Then

[V ,W ] = 0 ⇐⇒ Φt ◦ Ψu = Ψu ◦ Φt ∀u, t.

Proof. For a fixed value of t, the family of diffeo-
morphisms

Πu := Φ−1
t ◦ Ψu ◦ Φt.

Then Π0 = idM , and, for any p,

d

du
Πu(p) = Φ∗tW |Πu(p) .

Thus, Πu is flow of Φ∗tW , and

Φ∗tW = W ⇐⇒ Φ−1
t ◦ Ψu ◦ Φt = Ψu ∀u.

However, Φ∗tW = W ∀t ⇐⇒ [V ,W ] = 0. 2
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Corollary.Let V ,W ∈ X(M), and suppose that,
for some p ∈M , the vectors V (p) and W (p) are
linearly independent in TpM . Then [V,W ] = 0
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(x1, . . . , xn) on a neighborhood of p in which
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Corollary.Let V ,W ∈ X(M), and suppose that,
for some p ∈M , the vectors V (p) and W (p) are
linearly independent in TpM . Then [V ,W ] = 0
on some neighborhood of p ⇐⇒ ∃ coordinates
(x1, . . . , xn) on a neighborhood of p in which

V =
∂

∂x1
and W =

∂

∂x2
.
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