MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun
Stony Brook University
April 2, 2020

$$
\text { If } V \in \mathfrak{X}(M) \text {, we say that }
$$

$$
\begin{aligned}
& \text { If } V \in \mathfrak{X}(M) \text {, we say that } \\
& \qquad \gamma:(-\varepsilon, \varepsilon) \rightarrow M
\end{aligned}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\begin{array}{r}
\gamma:(-\varepsilon, \varepsilon) \rightarrow M \\
\text { with } \gamma(0)=p, \text { for some } \varepsilon>0
\end{array}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported, one can take $\varepsilon=\infty$:

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported, one can take $\varepsilon=\infty$:

$$
\gamma: \mathbb{R} \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow
 $$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact.

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold! \Longrightarrow

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting

$$
\Phi_{t}(p)=\gamma_{p}(t)
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p}

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p)
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p)
$$

This map is called the flow of V.

Theorem.

Theorem. Given any compactly supported

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$,

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms,

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\Phi_{0}=i d_{M}
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.
Notice that

$$
\Phi_{-t}=\left(\Phi_{t}\right)^{-1}
$$

When V not compactly supported, "flow" only defined on neighborhood of $M \times\{0\} \subset M \times \mathbb{R}$:

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

where dashed arrow means "not defined everywhere."

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$.

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Remark. Of course, since $\frac{\partial}{\partial x^{1}} \neq 0$ everywhere, this can actually be done if and only if $V(p) \neq 0$!

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$.

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$. Restrict flow $\Phi: M \times \mathbb{R} \rightarrow M$ of V to $N \times \mathbb{R}$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$. Restrict flow $\Phi: M \times \mathbb{R} \rightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$. Restrict flow $\Phi: M \times \mathbb{R} \rightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$
F: N \times \mathbb{R} \rightarrow M
$$

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$. Restrict flow $\Phi: M \times \mathbb{R} \rightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$
F: N \times \mathbb{R} \rightarrow M
$$

Inverse function theorem: local diffeo near p.

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in$ M be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ defined on a neighborhood $\mathscr{U} \subset M$ of p in which

$$
V=\frac{\partial}{\partial x^{1}}
$$

Proof. Let $N \subset M$ be an embedded $(n-1)$-dim'l submanifold through p such that $V(p) \notin T_{p} N$. Restrict flow $\Phi: M \times \mathbb{R} \rightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$
F: N \times \mathbb{R} \rightarrow M
$$

Inverse function theorem: local diffeo near p. Introduce local coordinates $\left(x^{2}, \ldots, x^{n}\right)$ on N, set $x^{1}=t$ on \mathbb{R}, pull back to $\mathscr{U} \subset M$ via F^{-1}.

Lie derivative:

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \xrightarrow{ }:-\rightarrow\right.
$$

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \xrightarrow{ }:-\rightarrow\right.
$$

Now suppose W is another vector field.

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \xrightarrow{ }:-\rightarrow\right.
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \xrightarrow{ }:-\rightarrow\right.
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\} .
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\}
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.
We can therefore define the Lie derivative of W with respect to V to be

Lie derivative:
Let V be a smooth vector field, with smooth flow

$$
\left\{\Phi_{t}: M \rightarrow M\right\}
$$

Now suppose W is another vector field.
We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$
\Phi_{t}^{*} W:=\left(\Phi_{t}^{-1}\right)_{*} W=\left(\Phi_{-t}\right)_{*} W
$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.
We can therefore define the Lie derivative of W with respect to V to be

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,
 $$
\mathcal{L}_{V} W=[V, W]
$$

$$
\begin{aligned}
& \text { Theorem. For any vector fields } V, W \in \mathfrak{X}(M) \text {, } \\
& \qquad \mathcal{L}_{V} W=[V, W] .
\end{aligned}
$$

Very different-looking definitions!

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,
 $$
\mathcal{L}_{V} W=[V, W]
$$

Very different-looking definitions!
Lie derivative:

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Very different-looking definitions!
Lie derivative:

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Lie bracket:

$$
[V, W] f=V(W f)-W(V f)
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,
 $$
\mathcal{L}_{V} W=[V, W]
$$

$$
\begin{aligned}
& \text { Theorem. For any vector fields } V, W \in \mathfrak{X}(M), \\
& \qquad \mathcal{L}_{V} W=[V, W] .
\end{aligned}
$$

Proof. First consider the open subset

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. First consider the open subset

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Near any $p \in \mathcal{A}, \exists$ coordinates $\left(x^{1}, \ldots, x^{n}\right)$ s.t.

$$
V=\frac{\partial}{\partial x^{1}}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. First consider the open subset

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Near any $p \in \mathcal{A}, \exists$ coordinates $\left(x^{1}, \ldots, x^{n}\right)$ s.t.

$$
V=\frac{\partial}{\partial x^{1}}
$$

Flow Φ_{t} in these coordinates is

$$
\left(x^{1}, x^{2}, \ldots, x^{n}\right) \longmapsto\left(x^{1}+t, x^{2}, \ldots, x^{n}\right)
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. First consider the open subset

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Near any $p \in \mathcal{A}, \exists$ coordinates $\left(x^{1}, \ldots, x^{n}\right)$ s.t.

$$
V=\frac{\partial}{\partial x^{1}}
$$

Flow Φ_{t} in these coordinates is

$$
\left(x^{1}, x^{2}, \ldots, x^{n}\right) \longmapsto\left(x^{1}+t, x^{2}, \ldots, x^{n}\right)
$$

So

$$
\Phi_{t}^{*} W=\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\begin{aligned}
\mathcal{L}_{V} W & :=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0}
\end{aligned}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\begin{aligned}
\mathcal{L}_{V} W & :=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0} \\
& =\sum \frac{\partial W^{j}}{\partial x^{1}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}
\end{aligned}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\begin{aligned}
\mathcal{L}_{V} W & :=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0} \\
& =\sum \frac{\partial W^{j}}{\partial x^{1}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}} \\
& =\left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}}\right]
\end{aligned}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\begin{aligned}
\mathcal{L}_{V} W & :=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0} \\
& =\sum \frac{\partial W^{j}}{\partial x^{1}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}} \\
& =\left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}}\right] \\
& =[V, W]
\end{aligned}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\begin{aligned}
\mathcal{L}_{V} W & :=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0} \\
& =\sum \frac{\partial W^{j}}{\partial x^{1}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}} \\
& =\left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}}\right] \\
& =[V, W]
\end{aligned}
$$

So $\mathcal{L}_{V} W=[V, W]$ on

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. So, in these coordinates,

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0}
$$

$$
=\left.\frac{d}{d t}\left(\sum W^{j}\left(x^{1}+t, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}\right)\right|_{t=0}
$$

$$
=\sum_{\Gamma} \frac{\partial W^{j}}{\partial x^{1}}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}}
$$

$$
=\left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}}\right]
$$

$$
=[V, W]
$$

So $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. Now $\mathcal{L}_{V} W$ and $[V, W]$ are both smooth vector fields.

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. Now $\mathcal{L}_{V} W$ and $[V, W]$ are both smooth vector fields. So the set of $p \in M$ where

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. Now $\mathcal{L}_{V} W$ and $[V, W]$ are both smooth vector fields. So the set of $p \in M$ where

$$
\mathcal{L}_{V} W-[V, W]=0
$$

is closed.

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. Now $\mathcal{L}_{V} W$ and $[V, W]$ are both smooth vector fields. So the set of $p \in M$ where

$$
\mathcal{L}_{V} W=[V, W]
$$

is closed.

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M,
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M,
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if

$$
\mathcal{B}:=\{p \mid V(p) \equiv 0 \text { near } p\}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if

$$
\mathcal{B}:=\{p \mid V(p) \equiv 0 \text { near } p\}=\operatorname{Int}\{p \mid V(p)=0\}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B},

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\mathcal{L}_{V} W=0 \quad \text { on } \mathcal{B} .
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\mathcal{L}_{V} W=0=[V, W] \quad \text { on } \mathcal{B}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\mathcal{L}_{V} W=0=[V, W] \quad \text { on } \mathcal{B}
$$

$M=\overline{\mathcal{A}} \cup \mathcal{B}$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\mathcal{L}_{V} W=0=[V, W] \quad \text { on } \mathcal{B}
$$

$M=\overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\begin{gathered}
\mathcal{L}_{V} W=0=[V, W] \quad \text { on } \mathcal{B} . \\
M=\overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow \mathcal{L}_{V} W=[V, W] \text { everywhere. }
\end{gathered}
$$

Theorem. For any vector fields $V, W \in \mathfrak{X}(M)$,

$$
\mathcal{L}_{V} W=[V, W]
$$

Proof. But since $\mathcal{L}_{V} W=[V, W]$ on

$$
\mathcal{A}:=\{p \mid V(p) \neq 0\} \subset M
$$

we therefore also have

$$
\mathcal{L}_{V} W=[V, W] \quad \text { on } \quad \overline{\mathcal{A}}
$$

by continuity.
But if
$\mathcal{B}:=\{p \mid V(p) \equiv 0$ near $p\}=\operatorname{Int}\{p \mid V(p)=0\}$
then flow is trivial on \mathcal{B}, and hence

$$
\begin{gathered}
\mathcal{L}_{V} W=0=[V, W] \quad \text { on } \mathcal{B} . \\
M=\overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow \mathcal{L}_{V} W=[V, W] \text { everywhere. } \square
\end{gathered}
$$

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let $\Phi_{t}=$ flow of V.

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let

$$
\Phi_{t}=\text { flow of } V
$$

Then

$$
[V, W]=0 \Longleftrightarrow
$$

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let

$$
\Phi_{t}=\text { flow of } V .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let

$$
\Phi_{t}=\text { flow of } V .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Proof.

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let

$$
\Phi_{t}=\text { flow of } V .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Proof.

$$
\mathcal{L}_{V} W=[V, W]
$$

$$
\begin{gathered}
\text { Corollary. Let } V, W \in \mathfrak{X}(M) \text {, and let } \\
\qquad \Phi_{t}=\text { flow of } V .
\end{gathered}
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Proof.

$$
\mathcal{L}_{V} W=[V, W]
$$

and, because $\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}$,

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let
 $$
\Phi_{t}=\text { flow of } V
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Proof.

$$
\mathcal{L}_{V} W=[V, W]
$$

and, because $\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}$,

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \Longrightarrow
$$

Corollary. Let $V, W \in \mathfrak{X}(M)$, and let
 $$
\Phi_{t}=\text { flow of } V .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t}^{*} W=W \quad \forall t
$$

Proof.

$$
\mathcal{L}_{V} W=[V, W]
$$

and, because $\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}$,

$$
\begin{aligned}
& \mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=0} \Longrightarrow \\
& \Phi_{u}^{*} \mathcal{L}_{V} W:=\left.\frac{d}{d t}\left(\Phi_{t}^{*} W\right)\right|_{t=u} .
\end{aligned}
$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set $\Phi_{t}=$ flow of V, \quad and $\quad \Psi_{u}=$ flow of W.

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Then $\Pi_{0}=\mathrm{id}_{M}$, and, for any p,

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Then $\Pi_{0}=\mathrm{id}_{M}$, and, for any p,

$$
\frac{d}{d u} \Pi_{u}(p)=\left.\Phi_{t}^{*} W\right|_{\Pi_{u}(p)}
$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Then $\Pi_{0}=\mathrm{id}_{M}$, and, for any p,

$$
\frac{d}{d u} \Pi_{u}(p)=\left.\Phi_{t}^{*} W\right|_{\Pi_{u}(p)}
$$

Thus, Π_{u} is flow of $\Phi_{t}^{*} W$, and

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Then $\Pi_{0}=\mathrm{id}_{M}$, and, for any p,

$$
\frac{d}{d u} \Pi_{u}(p)=\left.\Phi_{t}^{*} W\right|_{\Pi_{u}(p)}
$$

Thus, Π_{u} is flow of $\Phi_{t}^{*} W$, and

$$
\Phi_{t}^{*} W=W \quad \Longleftrightarrow \quad \Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}=\Psi_{u} \quad \forall u
$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set

$$
\Phi_{t}=\text { flow of } V, \quad \text { and } \quad \Psi_{u}=\text { flow of } W .
$$

Then

$$
[V, W]=0 \quad \Longleftrightarrow \quad \Phi_{t} \circ \Psi_{u}=\Psi_{u} \circ \Phi_{t} \quad \forall u, t
$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$
\Pi_{u}:=\Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}
$$

Then $\Pi_{0}=\mathrm{id}_{M}$, and, for any p,

$$
\frac{d}{d u} \Pi_{u}(p)=\left.\Phi_{t}^{*} W\right|_{\Pi_{u}(p)}
$$

Thus, Π_{u} is flow of $\Phi_{t}^{*} W$, and

$$
\Phi_{t}^{*} W=W \quad \Longleftrightarrow \Phi_{t}^{-1} \circ \Psi_{u} \circ \Phi_{t}=\Psi_{u} \quad \forall u
$$

However, $\Phi_{t}^{*} W=W \forall t \Longleftrightarrow[V, W]=0$.

Corollary. Let $V, W \in \mathfrak{X}(M)$,

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, the vectors $V(p)$ and $W(p)$ are linearly independent in $T_{p} M$.

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors $V(p)$ and $W(p)$ are linearly independent in $T_{p} M$.

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors $V(p)$ and $W(p)$ are linearly independent in $T_{p} M$. Then $[V, W]=0$ on some neighborhood of $p \Longleftrightarrow$

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors $V(p)$ and $W(p)$ are linearly independent in $T_{p} M$. Then $[V, W]=0$ on some neighborhood of $p \Longleftrightarrow \exists$ coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on a neighborhood of p in which

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors $V(p)$ and $W(p)$ are linearly independent in $T_{p} M$. Then $[V, W]=0$ on some neighborhood of $p \Longleftrightarrow \exists$ coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on a neighborhood of p in which

$$
V=\frac{\partial}{\partial x^{1}} \quad \text { and } \quad W=\frac{\partial}{\partial x^{2}}
$$

