MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

April 2, 2020

If $V \in \mathfrak{X}(M)$, we say that

If
$$V \in \mathfrak{X}(M)$$
, we say that
 $\gamma : (-\varepsilon, \varepsilon) \to M$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$

is an *integral curve* of V if

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$
 for all $t \in (-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma: (-\varepsilon, \varepsilon) \to M$$

with $\gamma(0) = p$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported, one can take $\varepsilon = \infty$:

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported, one can take $\varepsilon = \infty$:

$$\gamma: \mathbb{R} \to M.$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported

Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff

Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff supp $V := \overline{\{p \in M \mid V(p) \neq 0\}}$ Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff supp $V := \overline{\{p \in M \mid V(p) \neq 0\}}$

is compact.

 \implies every integral curve can be extended to

 $\gamma:\mathbb{R}\to M$

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map $\Phi_t : M \to M$

by setting

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

$$\Phi: M \times \mathbb{R} \to M$$

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

$$\Phi: M \times \mathbb{R} \to M$$

by setting

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\Phi(p,t) = \Phi_t(p).$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\Phi(p,t) = \Phi_t(p).$

This map is called the flow of V.

Theorem.

Theorem. *Given any* compactly supported
$\Phi_t: M \to M$

 $\Phi_t: M \to M$

are all diffeomorphisms,

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = i d_M$

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$ $\Phi_u \circ \Phi_t = \Phi_{u+t}.$

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = i d_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

Notice that

$$\Phi_{-t} = (\Phi_t)^{-1}$$

When V not compactly supported, "flow" only defined on neighborhood of $M \times \{0\} \subset M \times \mathbb{R}$: $\Phi: M \times \mathbb{R} \dashrightarrow M$

where dashed arrow means "not defined everywhere."

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in M$ be a point where $V(p) \neq 0$.

Theorem. Let M be a smooth n-manifold, let $V \in \mathfrak{X}(M)$ be a smooth vector field, and let $p \in M$ be a point where $V(p) \neq 0$. Then the exists a smooth coordinate chart (x^1, \ldots, x^n)

$$V = \frac{\partial}{\partial x^1}.$$

$$V = \frac{\partial}{\partial x^1}.$$

Remark. Of course, since $\frac{\partial}{\partial x^1} \neq 0$ everywhere, this can actually be done if and only if $V(p) \neq 0$!

$$V = \frac{\partial}{\partial x^1}.$$

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p

$$V = \frac{\partial}{\partial x^1}.$$

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n-1)-dim'l submanifold through p such that $V(p) \notin T_p N$.

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p such that $V(p) \notin T_p N$. Restrict flow $\Phi : M \times \mathbb{R} \dashrightarrow M$ of V to $N \times \mathbb{R}$

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p such that $V(p) \notin T_p N$. Restrict flow $\Phi : M \times \mathbb{R} \dashrightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$V = \frac{\partial}{\partial x^1}.$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p such that $V(p) \notin T_p N$. Restrict flow $\Phi : M \times \mathbb{R} \dashrightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$F: N \times \mathbb{R} \dashrightarrow M.$$

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p such that $V(p) \notin T_p N$. Restrict flow $\Phi : M \times \mathbb{R} \dashrightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$F: N \times \mathbb{R} \dashrightarrow M.$$

Inverse function theorem: local diffeo near p.

$$V = \frac{\partial}{\partial x^1}$$

Proof. Let $N \subset M$ be an embedded (n - 1)-dim'l submanifold through p such that $V(p) \notin T_p N$. Restrict flow $\Phi : M \times \mathbb{R} \dashrightarrow M$ of V to $N \times \mathbb{R}$ to define smooth map

$$F: N \times \mathbb{R} \dashrightarrow M.$$

Inverse function theorem: local diffeo near p. Introduce local coordinates (x^2, \ldots, x^n) on N, set $x^1 = t$ on \mathbb{R} , pull back to $\mathscr{U} \subset M$ via F^{-1} . \Box

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Let V be a smooth vector field, with smooth flow $\{ \Phi_t : M \dashrightarrow M \}.$

Now suppose W is another vector field.

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

Let V be a smooth vector field, with smooth flow $\{ \Phi_t : M \dashrightarrow M \}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

Let V be a smooth vector field, with smooth flow $\{ \Phi_t : M \dashrightarrow M \}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

We can therefore define the Lie derivative of W with respect to V to be

Let V be a smooth vector field, with smooth flow $\{\Phi_t: M \dashrightarrow M\}.$

Now suppose W is another vector field. We then get a family of "pulled back" vector fields, depending on $t \in \mathbb{R}$, defined as

$$\Phi_t^* W := (\Phi_t^{-1})_* W = (\Phi_{-t})_* W.$$

At each point, this gives us a family of tangent vectors, depending differentiably on t.

We can therefore define the Lie derivative of W with respect to V to be

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Very different-looking definitions!

Very different-looking definitions!

Lie derivative:

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Very different-looking definitions!

Lie derivative:

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0}.$$

Lie bracket:

[V, W]f = V(Wf) - W(Vf).
Proof. First consider the open subset $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M.$

Proof. First consider the open subset $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M.$ Near any $p \in \mathcal{A}, \exists$ coordinates (x^1, \dots, x^n) s.t. $V = \frac{\partial}{\partial x^1}.$

Proof. First consider the open subset

 $\mathcal{A} := \{ p \mid V(p) \neq \mathbf{0} \} \subset M.$ Near any $p \in \mathcal{A}, \exists \text{ coordinates } (x^1, \dots, x^n) \text{ s.t.}$ ∂

$$V = \frac{\partial}{\partial x^1}.$$

Flow Φ_t in these coordinates is

$$(x^1, x^2, \dots, x^n) \longmapsto (x^1 + t, x^2, \dots, x^n).$$

Proof. First consider the open subset

$$\begin{split} \mathcal{A} &:= \{p \mid V(p) \neq \mathbf{0}\} \subset M. \\ \text{Near any } p \in \mathcal{A}, \ \exists \text{ coordinates } (x^1, \dots, x^n) \text{ s.t.} \\ \partial \end{split}$$

$$V = \frac{\partial}{\partial x^1}$$

Flow Φ_t in these coordinates is

$$(x^1, x^2, \dots, x^n) \longmapsto (x^1 + t, x^2, \dots, x^n).$$

So

$$\Phi_t^* W = \sum W^j (x^1 + t, x^2, \dots, x^n) \frac{\partial}{\partial x^j}$$

Proof. So, in these coordinates, $\mathcal{L}_V W := \left. \frac{d}{dt} (\Phi_t^* W) \right|_{t=0}$

$$\mathcal{L}_{V}W := \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0}$$
$$= \left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t, x^{2}, \dots, x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0}$$

$$\mathcal{L}_{V}W := \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0}$$

= $\left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t, x^{2}, \dots, x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0}$
= $\left. \sum \frac{\partial W^{j}}{\partial x^{1}} (x^{1}, x^{2}, \dots, x^{n}) \frac{\partial}{\partial x^{j}} \right.$

$$\begin{aligned} \mathcal{L}_{V}W &:= \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0} \\ &= \left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t,x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0} \\ &= \left. \sum \frac{\partial W^{j}}{\partial x^{1}} (x^{1},x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right|_{t=0} \\ &= \left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}} \right] \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{V}W &:= \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0} \\ &= \left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t,x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0} \\ &= \left. \sum \frac{\partial W^{j}}{\partial x^{1}} (x^{1},x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right|_{t=0} \\ &= \left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}} \right] \\ &= \left[V,W \right] \end{aligned}$$

Proof. So, in these coordinates,

$$\begin{aligned} \mathcal{L}_{V}W &:= \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0} \\ &= \left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t,x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0} \\ &= \left. \sum \frac{\partial W^{j}}{\partial x^{1}} (x^{1},x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right|_{t=0} \\ &= \left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}} \right] \\ &= \left[V,W \right] \end{aligned}$$

So $\mathcal{L}_V W = [V, W]$ on

Proof. So, in these coordinates,

$$\begin{aligned} \mathcal{L}_{V}W &:= \left. \frac{d}{dt} (\Phi_{t}^{*}W) \right|_{t=0} \\ &= \left. \frac{d}{dt} \left(\sum W^{j}(x^{1}+t,x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right) \right|_{t=0} \\ &= \left. \sum \frac{\partial W^{j}}{\partial x^{1}} (x^{1},x^{2},\ldots,x^{n}) \frac{\partial}{\partial x^{j}} \right|_{t=0} \\ &= \left[\frac{\partial}{\partial x^{1}}, \sum W^{j} \frac{\partial}{\partial x^{j}} \right] \\ &= \left[V,W \right] \end{aligned}$$

So $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M.$

Proof. Now $\mathcal{L}_V W$ and [V, W] are both smooth vector fields.

Proof. Now $\mathcal{L}_V W$ and [V, W] are both smooth vector fields. So the set of $p \in M$ where

Proof. Now $\mathcal{L}_V W$ and [V, W] are both smooth vector fields. So the set of $p \in M$ where

$$\mathcal{L}_V W - [V, W] = \mathbf{0}$$

is closed.

Proof. Now $\mathcal{L}_V W$ and [V, W] are both smooth vector fields. So the set of $p \in M$ where

 $\mathcal{L}_V W = [V, W]$

is closed.

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv \mathbf{0} \text{ near } p \}$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{p \mid V(p) \equiv \mathbf{0} \text{ near } p\} = \text{Int } \{p \mid V(p) = \mathbf{0}\}$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} ,

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

$$\mathcal{L}_V W = \mathbf{0} \qquad \text{on } \mathcal{B}.$$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq 0\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

$$\mathcal{L}_V W = \mathbf{0} = [V, W] \quad \text{on } \mathcal{B}.$$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

 $\mathcal{L}_V W = \mathbf{0} = [V, W]$ on \mathcal{B} . $M = \overline{\mathcal{A}} \cup \mathcal{B}$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

 $\mathcal{L}_V W = \mathbf{0} = [V, W] \quad \text{on } \mathcal{B}.$ $M = \overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow$

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

 $\mathcal{L}_V W = \mathbf{0} = [V, W]$ on \mathcal{B} . $M = \overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow \mathcal{L}_V W = [V, W]$ everywhere.

Proof. But since $\mathcal{L}_V W = [V, W]$ on $\mathcal{A} := \{p \mid V(p) \neq \mathbf{0}\} \subset M,$

we therefore also have

$$\mathcal{L}_V W = [V, W]$$
 on $\overline{\mathcal{A}}$

by continuity.

But if

 $\mathcal{B} := \{ p \mid V(p) \equiv 0 \text{ near } p \} = \text{Int } \{ p \mid V(p) = 0 \}$ then flow is trivial on \mathcal{B} , and hence

 $\mathcal{L}_V W = \mathbf{0} = [V, W] \quad \text{on } \mathcal{B}.$ $M = \overline{\mathcal{A}} \cup \mathcal{B} \Longrightarrow \mathcal{L}_V W = [V, W] \text{ everywhere. } \Box$

Then

 $[V,W] = 0 \quad \Longleftrightarrow \quad$

Then

 $[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$

Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$$

Proof.

Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$$

Proof.

 $\mathcal{L}_V W = [V, W],$

Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$$

Proof.

$$\mathcal{L}_V W = [V, W],$$

and, because $\Phi_u \circ \Phi_t = \Phi_{u+t}$,

Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$$

Proof.

$$\mathcal{L}_V W = [V, W],$$

and, because $\Phi_u \circ \Phi_t = \Phi_{u+t}$,

$$\mathcal{L}_V W := \frac{d}{dt} (\Phi_t^* W) \bigg|_{t=0} \Longrightarrow$$

Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t^* W = W \quad \forall t.$$

Proof.

$$\mathcal{L}_V W = [V, W],$$

and, because $\Phi_u \circ \Phi_t = \Phi_{u+t}$,

$$\mathcal{L}_{V}W := \frac{d}{dt} (\Phi_{t}^{*}W) \Big|_{t=0} \Longrightarrow$$
$$\Phi_{u}^{*}\mathcal{L}_{V}W := \frac{d}{dt} (\Phi_{t}^{*}W) \Big|_{t=u}.$$

Theorem. Let $V, W \in \mathfrak{X}(M)$, and set
Theorem. Let $V, W \in \mathfrak{X}(M)$, and set $\Phi_t = \text{flow of } V$, and $\Psi_u = \text{flow of } W$.

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

 $[V, W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

 $\Phi_t = flow \ of \ V, \quad and \quad \Psi_u = flow \ of \ W.$ Then

$$[V, W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V, W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

Then $\Pi_0 = \mathrm{id}_M$, and, for any p,

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

Then $\Pi_0 = \mathrm{id}_M$, and, for any p, $\frac{d}{du}\Pi_u(p) = \Phi_t^*W|_{\Pi_u(p)}.$

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

Then $\Pi_0 = \mathrm{id}_M$, and, for any p, $\frac{d}{du}\Pi_u(p) = \Phi_t^*W|_{\Pi_u(p)}$. Thus, Π_u is flow of Φ_t^*W , and

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

Then $\Pi_0 = \mathrm{id}_M$, and, for any p, $\frac{d}{du}\Pi_u(p) = \Phi_t^* W|_{\Pi_u(p)}.$

Thus, Π_u is flow of $\Phi_t^* W$, and

$$\Phi_t^* W = W \iff \Phi_t^{-1} \circ \Psi_u \circ \Phi_t = \Psi_u \quad \forall u.$$

 $\Phi_t = flow \text{ of } V, \quad and \quad \Psi_u = flow \text{ of } W.$ Then

$$[V,W] = 0 \quad \Longleftrightarrow \quad \Phi_t \circ \Psi_u = \Psi_u \circ \Phi_t \quad \forall u, t.$$

Proof. For a fixed value of t, the family of diffeomorphisms

$$\Pi_u := \Phi_t^{-1} \circ \Psi_u \circ \Phi_t.$$

Then $\Pi_0 = \mathrm{id}_M$, and, for any p, $\frac{d}{du}\Pi_u(p) = \Phi_t^* W|_{\Pi_u(p)}.$

Thus, Π_u is flow of $\Phi_t^* W$, and

$$\Phi_t^* W = W \iff \Phi_t^{-1} \circ \Psi_u \circ \Phi_t = \Psi_u \quad \forall u.$$

However, $\Phi_t^* W = W \; \forall t \iff [V, W] = 0.$

Corollary. Let $V, W \in \mathfrak{X}(M)$,

Corollary. Let $V, W \in \mathfrak{X}(M)$, and suppose that, the vectors V(p) and W(p) are linearly independent in T_pM . **Corollary.** Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors V(p) and W(p) are linearly independent in T_pM . **Corollary.** Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors V(p) and W(p) are linearly independent in T_pM . Then [V, W] = 0on some neighborhood of $p \iff$ **Corollary.** Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors V(p) and W(p) are linearly independent in T_pM . Then [V, W] = 0on some neighborhood of $p \iff \exists$ coordinates (x^1, \ldots, x^n) on a neighborhood of p in which **Corollary.** Let $V, W \in \mathfrak{X}(M)$, and suppose that, for some $p \in M$, the vectors V(p) and W(p) are linearly independent in T_pM . Then [V, W] = 0on some neighborhood of $p \iff \exists$ coordinates (x^1, \ldots, x^n) on a neighborhood of p in which

$$V = \frac{\partial}{\partial x^1}$$
 and $W = \frac{\partial}{\partial x^2}$